[1] 潘温文. 中国西南地区特有野生花卉——滇牡丹[J]. 园林, 2015(12):56-58. Pan WW.Paeonia delavayi—endemic wild flowers in southwest China[J]. Landscape Architecture, 2015(12):56-58. [2] 吴少华, 吴大刚, 陈有为, 等. 紫牡丹的化学成分研究[J]. 中草药, 2005(5):648-651. Wu SH, Wu DG, Chen YW, et al.Chemical constituents of Paeonia delavayi[J]. Chinese Traditional and Herbal Drugs, 2005(5):648-651. [3] 张水滔, 徐娟, 高明, 等. 滇牡丹籽油的脂肪酸组成及不同天然抗氧化剂对其货架期的影响[J]. 中国油脂, 2018, 43(3):124-126. Zhang ST, Xu J, Gao M, et al.Fatty acid composition of peony seed oil and itsshelf life affected by different natural antioxidants[J]. China Oils and Fats, 2018, 43(3):124-126. [4] 潘温文, 李伟, 谭芮, 等. 不同处理对滇牡丹种子萌发及幼苗生长的影响[J]. 西部林业科学, 2014, 43(2):48-52. Pan WW, Li W, Tan R, et al.Effects of different treatments on seed germination and seedling growth of Paeonia delavayi[J]. Journal of West China Forestry Science, 2014, 43(2):48-52. [5] 张艳丽. 滇牡丹花色类群遗传背景分析[D]. 北京:中国林业科学研究院, 2011. Zhang YL.Analysis genetic backgroud to flower color groups in Paeonia delavayi Franch. [D]. Beijing:Chinese Academy of Forestry, 2011. [6] 缪福俊, 安曼云, 华梅, 等. 诱抗剂BTH对滇牡丹3种主要病害的诱抗研究[J]. 西部林业科学, 2017, 46(3):116-120. Miao FJ, An MY, Hua M, et al.The Study of the inducer BTH on resistance to the three main disease of Paeonia delavayi[J]. Journal of West China Forestry Science, 2017, 46(3):116-120. [7] 李奎. 滇牡丹保护生物学与遗传多样性研究[D]. 北京:中国林业科学研究院, 2013. Li K.Research on conservation biology and genetic diversity of Paeonia delavayi complex(Paeoniaceae)[D]. Beijing:Chinese Academy of Forestry, 2013. [8] 任秀霞, 张盈, 薛璟祺, 等. 滇牡丹天然居群的遗传多样性分析[J]. 植物遗传资源学报, 2015, 16(4):772-780. Ren XX, Zhang Y, Xue JQ, et al.Genetic diversity analysis of natural populations in Paeonia delavayi[J]. Journal of Plant Genetic Resources, 2015, 16(4):772-780. [9] Yoo WG, Kim TI, Li S, et al.Reference genes for quantitative analysis on Clonorchis sinensisgene expression by real-time PCR[J]. Parasitology Research, 2009, 104(2):321-328. [10] 杨晶, 卢玉彬, 迟孟涵, 等. 红花种子不同发育时期内参基因表达稳定性分析[J]. 中草药, 2017, 48(9):1845-1850. Yang J, Lu YB, Chi MH, et al.Analysis on stability of reference genes in different developmental stages of seeds from Carthamus tinctorius[J]. Chinese Traditional and Herbal Drugs, 2017, 48 (9):1845-1850. [11] Saiki R, Scharf S, Faloona F, et al.Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[J]. 1985, 230(4732):1350-1354. [12] 胡丹丹, 顾金刚, 姜瑞波, 等. 定量RT-PCR及其在植物学研究中的应用[J]. 植物营养与肥料学报, 2007(3):520-525. Hu DD, Gu JG, Jiang RB, et al.Quantitative RT-PCR and its application in botany research[J]. Journal of Plant Nutrition and Fertilizers, 2007(3):520-525. [13] 魏毅东, 陈玉, 郭海萍, 等. 水稻缺素胁迫下实时荧光定量RT-PCR的内参基因的选择[J]. 农业生物技术学报, 2013, 21(11):1302-1312. Wei YD, Cheng Y, Guo HP, et al.Selection of reference genes for real-time quantitative RT- PCR in rice(Oryza sativa L. ssp. japonica)under nutrient deficiency[J]. Journal of Agricultural Biotechnology, 2013, 21(11):1302-1312. [14] 常丽娟, 宋君, 张富丽, 等. 实时荧光定量PCR方法检测转基因玉米MIR604[J]. 浙江农业学报, 2017, 29(11):1769-1774. Chang LJ, Song J, Zhang FL, et al.A real-time fluorescent quantitative PCR for detection of genetically modified maize line MIR604[J]. Acta Agriculturae Zhejiangensis, 2017, 29(11):1769-1774. [15] 王骁. 基于实时荧光定量PCR的大豆内参基因筛选[D]. 晋中:山西农业大学, 2016. Wang X.Selection of candidate reference genes for gene expression studies by RT-qRCR in soybean[D]. Jinzhong:Shanxi Agricultural University, 2016. [16] 张颖, 陈婉婷, 陈冉红, 等. 杉木实时荧光定量PCR分析中内参基因的选择[J]. 林业科学研究, 2019, 32(2):65-72. Zhang Y, Chen WT, Chen RH, et al.Quantitative real-time PCRanalysis of Cunninghamia lanceolata in the selection of the reference genes[J]. Forest Research, 2019, 32(2):65-72. [17] 张登, 李景剑, 张梦洁, 等. 黄梁木实时荧光定量PCR分析中内参基因的选择[J]. 植物学报, 2018, 53(6):829-839. Zhang D, Li JJ, Zhang MJ, et al.Selection and validation of reference genes for quantitative RT-PCR analysis in Neolamarckia cadamba[J]. Chinese Bulletin of Botany, 2018, 53(6):829-839. [18] 晋海军, 王海霞, 刘绍红, 等. 川续断根实时荧光定量PCR内参基因的筛选[J]. 分子植物育种, 2018, 16(24):7998-8004. Jin HJ, Wang HX, Liu SH, et al.Selection of reference genes for quantitative real-time PCR in Dipsacu asperides roots[J]. Molecular Plant Breeding, 2018, 16(24):7998-8004. [19] 王世强, 党凯凯, 牛俊峰, 等. 黄精实时荧光定量PCR内参基因的筛选[J]. 基因组学与应用生物学, 2017, 36(11):4770-4777. Wang SQ, Dang KK, Niu JF, et al.Screening of reference genes based on quantitative real-time PCR analysis in Polygonatum sibiricum[J]. Genomics and Applied Biology, 2017, 36(11):4770-4777. [20] 李竹君, 郭健雄, 李永文, 等. 穿心莲实时定量PCR分析中内参基因的选择[J]. 广州中医药大学学报, 2013, 30(2):240-244, 286. Li ZJ, Guo JX, Li YW, et al.Selection of reference genes for real-time quantitative PCR in Andrographis paniculata(Burm. f)Nees[J]. Journal of Guangzhou University of Traditional Chinese Medicine, 2013, 30(2):240-244, 286. [21] 王旭, 敖妍, 刘阳, 等. 文冠果实时荧光定量PCR内参基因的筛选[J/OL]. 分子植物育种, 2020, 18(9):2977-2986. Wang X, Ao Y, Liu Y, et al.Selection of reference genes for quantitative real-time PCR in Xanthoceras sorbifolium Bunge[J]. Molecular Plant Breeding, 2020, 18(9):2977-2986. [22] Andersen CL, Jensen JL, Orntoft TF .Normalizationof Real-time quantitative reverse transcription-PCR data:A model-based variance estimation approach to identify genes suited for normalization, approach to identify genes suited for normalization, applied to bladderand colon cancer data sets[J]. Cancer Research, 2004, 64(15):5245-5250. [23] 吴建阳, 何冰, 杜玉洁, 等, 利用geNorm、NormFinder和BestKeeper软件进行内参基因稳定性分析的方法[J]. 现代农业科技, 2017(5):278-281. Wu JY, He B, Du YJ, et al.Analysis method of systematically evaluating stability of reference genes using geNorm, NormFinder and BestKeeper[J]. Modern Agricultural Science and Technology, 2017(5):278-281. [24] 张贤, 王建红, 李增强, 等. 紫云英实时荧光定量PCR分析中内参基因的选择[J]. 农业生物技术学报, 2017, 25(8):1356-1365. Zhang X, Wang JH, Li ZQ, et al.Reference gene selection for real-time quantitative PCR normalization in Astragalus sinicus[J]. Journal of Agricultural Biotechnology, 2017, 25(8):1356-1365. [25] 张计育, 黄胜男, 王涛, 等. 金魁猕猴桃RT-qPCR内参基因的筛选[J]. 上海农业学报, 2018, 34(1):84-88. Zhang JY, Huang SN, Wang T, et al.Screening of reference genes for reverse transcription quantitative real-time PCR in Actinidia deliciosa[J]. Acta Agriculturae Shanghai, 2018, 34(1):84-88. [26] 苏西娅, 石元豹, 杨晓明, 等. 银杏实时荧光定量PCR分析中内参基因的选择与验证[J]. 植物生理学报, 2019, 55(6):875-882. Su XY, Shi YB, Yang XM, et al.Selection and validation of reference genes for quantitative real-time PCR analysis in Ginkgo biloba[J]. Plant Physiology Journal, 2019, 55(6):875-882. [27] 张莞晨, 阮成江, 李景滨, 等. 四种木本油料内参基因筛选及Actin基因时空表达分析[J]. 分子植物育种, 2018, 16(14):4576-4582. Zhang WC, Ruan CJ, Li JB, et al.Screening of reference genes in four woody-oil trees and spatio-temporal expression analysis of Actin gene[J]. Molecular Plant Breeding, 2018, 16(14):4576-4582. [28] 张芳明. 甜樱桃内参基因的筛选[D]. 郑州:河南农业大学, 2013. Zhang FM.Selection of reference genes in sweet cherry[D]. Zhengzhou:Henan Agricultural University, 2013. [29] Xu Y, Zhu X, Gong Y, et al.Evaluation of reference genes for gene expression studies in radish(Raphanus sativus L.)using quantitative real-time PCR[J]. Biochemical and Biophysical Research Communications, 2012, 424(3):398-403. [30] 王彦杰, 董丽, 张超, 等. 牡丹实时定量PCR分析中内参基因的选择[J]. 农业生物技术学报, 2012, 20(5):521-528. Wang YJ, Dong L, Zhang C, et al.Reference gene selection for real-time quantitative PCR normalization in tree peony(Paeonia suffruticosa Andr. )[J]. Journal of Agricultural Biotechnology, 2012, 20(5):521-528. [31] Li J, Han J, Yang J, et al.Selection of reference genes for quantitative real-time PCR during flower development in tree peony(Paeonia suffruticosa andr. )[J]. Frontiers in Plant Science, 2016, 2016, 7:516. |