[1] Yuya Y, Akihiro K, Chizuru S, et al. Ethanol production from paper sludge by immobilized Zymomonas mobilis[J]. Biochem Eng J, 2008, 42:314-319. [2] Zhao J, Xia L. Ethanol production from corn stover hemicellulosic hydrolysate using immobilized recombinant yeast cells[J]. Biochem Eng J, 2010, 49:28-32. [3] Yang B, Wyman CE. Pretreatment:the key to unlocking low-cost cellulosic ethanol[J]. Biofuels, Bio products and Bio refining, 2008, 2(1):26-40. [4] Martinez A, Rodriguez ME, Wells ML, et al. Detoxification of Dilute acid hydrolysates of lignocellulose with lime[J]. Biotechnology Progress, 2001, 17(2):287-293. [5] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review[J]. Bioresource Technology, 2002, 83(1):1-11. [6] Aristidou A, Penttila M. Metabolic engineering applications to renewable resource utilization[J]. Current Opinion in Biotechnology, 2000, 11(2):187-198. [7] Venkatachalam N, Violeta SiN, Ed WJvN, et al. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae[J]. AMB Express, 2016, 6(1):59. [8] Matsushika A, Inoue H, Kodaki T, et al. Ethanol production from xylose in engineered Saccharomyces cerevisiae strains:current state and perspectives[J]. Applied Microbiology and Biotechnology, 2009, 84(1):37-53. [9] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review[J]. Bioresource Technology, 2002, 83(1):1-11. [10] Aristidou A, Penttila M. Metabolic engineering applications to renewable resource utilization[J]. Current Opinion in Biotechnology, 2000, 11(2):187-198. [11] Allen SA, Clark W, McCaffery JM, et al. Furfural induces reactive oxygen species accumulation and cellular damage in Saccharomyces cerevisiae[J]. Biotechnology for Biofuels, 2010, 3:2. [12] 赵鲜仙, 周玚, 张思伟, 等. ADH7启动子精细调控表达MSN2酿酒酵母菌株对糠醛耐受的研究[J]. 微生物学通报, 2013, 42(10):1903-1911. [13] Kim D, Hahn JS. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae’s tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress[J]. Applied and Environmental Microbiology, 2013, 79(16):5069-5077. [14] Ullah A, Orij R, Brul S, et al. Quantitative analysis of the modes of growth inhibition by weak organic acids in Saccharomyces cerevisiae[J]. Applied and Environmental Microbiology, 2012, 78(23):8377-8387. [15] Tenreiro S, Rosa PC, Viegas CA, et al. Expression of the AZR1 gene(ORF YGR224w), encoding a plasma membrane transporter of the major facilitator superfamily, is required for adaptation to acetic acid and resistance to azoles in Saccharomyces cerevisiae[J]. Yeast, 2000, 16(16):1469-1481. [16] Ding J, Holzwarth G, Penner MH, et al. Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance[J]. FEMS Microbiology Letters, 2015, 362(3):1-7. [17] 王昕. 酿酒酵母耐受抑制剂的性能强化[D]. 天津:天津大学, 2015. [18] Heipieper HJ, Weber FJ, Sikkema J, et al. Mechanisms of resistance of whole cells to toxic solvents[J]. Trends in Biotechnology, 1994, 12(10):409-415. [19] Palmqvist E, Hahn-Hagerdal B. Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification[J]. Bioresource Technology, 2000, 74(1):17-24. [20] Larsson S, Cassland P, Jonsson LJ. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase[J]. Applied and Environmental Microbiology, 2001, 67(3):1163-1170. [21] Alper H, Moxley J, Nevoigt E, et al. Engineering yeast transcription machinery for improved ethanol tolerance and production[J]. Science, 2006, 314(5805):1565-1568. [22] 董健, 李月强, 陈叶福, 等. 传统诱变与基因组重排技术相结合选育耐高温酿酒酵母菌株[J]. 酿酒科技, 2013(8):50-53. [23] 郭天琦, 滕利荣, 孟庆繁, 等. 高耐性高产乙醇酿酒酵母的诱变选育[J]. 中国调味品, 2014(11):1-4. [24] Ask M, Mapelli V, Hock H, et al. Engineering glutathione biosynthesis of Saccharomyces cerevisiae increases robustness to inhibitors in pretreated lignocellulosic materials[J]. Microbial Cell Factories, 2013, 12:87. [25] 刘红梅, 许琳, 严明, 等. gTME构建共发酵木糖和葡萄糖的重组酿酒酵母[J]. 生物工程学报, 2008, 24(16):1010-1015. [26] Kötter P, Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology, 1993, 38:776-783. [27] Sadat MRK, Masayuki S, Tsutomu K. Boost in bioethanol produc- tion using recombinant Saccharomyces cerevisiae with mutated stri-ctly NADPH-dependent xylose reductase and NADP(+)-depen-dent xylitol dehydrogenase[J]. J Biotechnol, 2013, 165(3-4):153-156. [28] Zhang GC, Liu JJ, Ding WT. Decreased xylitol formation during xylose fermentation in Saccharomyces cerevisiae due to overexpression of water-forming NADH oxidase[J]. Appl Environ Microbiol, 2012, 78:1081-1086. [29] Bro C, Regenberg B, Förster JNJ. In silico aided metabolic engineering of Saccharomyces cerevisiae for improved bioethanol production[J]. Metab Eng, 2006, 8:102-111. [30] Hector RE, Qureshi N, Hughes SR. Expression of a heterologous xylose transporter in a Saccharomyces cerevisia strain engineered to utilize xylose improves aerobic xylose consumption[J]. Appl Microbiol Biotechnol, 2008, 80:675-684. [31] Du J, Li S, Zhao H, et al. Discovery and characterization of novel D-xylosespecific transporters from Neurospora crass and Pichia stipiti[J]. Mol Biosyst, 2010, 6:2150-2156. [32] Thorsten S, Eckhard B. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae[J]. Biotechnol Biofuels, 2012, 5:14. [33] Harner NK, Wen X, Bajwa PK, et al. Genetic improvement of native xylose-fermenting yeasts for ethanol production[J]. J Ind Microbiol Biotechnol, 2015, 42(1):1-20. [34] Inoue H, Hashimoto S, Matsushika A, et al. Breeding of a xylose-fermenting hybrid strain by mating genetically engineered haploid strains derived from industrial Saccharomyces cerevisiae[J]. J Ind Microbiol Biotechnol, 2014, 41(12):1773-1781. [35] Kim SR, Lee KS, Kong II, et al. Construction of an efficient xylose-fermenting diploid Saccharomyces cerevisiae strain through mating of two engineered haploid strains capable of xylose assimilation[J]. J Biotechnol, 2013, 164(1):105-111. [36] 曹萌, 宫彦婷, 张宜, 等. 生产纤维素乙醇的原生质体融合菌株的构建[J]. 太阳能学报, 2011, 32(7):32-37. [37] Soo RK, Nathania RK, Heejin K, et al. Feasibility of xylose fermentation by engineered Saccharomyces cerevisiae overexpressing endogenous aldose reductase(GRE3), xylitol dehydrogenase(XYL2), and xylulokinase(XYL3)from Scheffersomyces stipites[J]. FEMS Yeast Res, 2013, 13(3):312-321. [38] Sun J, Shao Z, Zhao H, et al. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering, 2012, 109(8):2082-2092. [39] Narayanan V, Sànchez I Nogué V, van Niel EW, Gorwa-Grauslund MF. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae [J]. AMB Express, 2016, 6(1):59. [40] Zha J, Hu Ml, Shen MH, et al. Balance of XYL1 and XYL2 expres- sion in different yeast chassis for improved xylose fermentation[J]. Front Microbiol, 2012, 3:355. [41] Zha J, Shen MH, Hu ML, et al. Enhanced expression of genes involved in initial xylose metabolism and the oxidative pentose phosphate pathway in the improved xylose-utilizing Saccharomyces cerevisiae through evolutionary engineering[J]. J Ind Microbiol Biotechnol, 2013, 41:27-39. |