生物技术通报 ›› 2020, Vol. 36 ›› Issue (10): 32-39.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0103
收稿日期:
2020-02-04
出版日期:
2020-10-26
发布日期:
2020-11-02
作者简介:
宿强,男,硕士研究生,研究方向:草地植物遗传育种;E-mail: XU Qiang(), ZUO Hui, CHAO Yue-hui, ZENG Hui-ming()
Received:
2020-02-04
Published:
2020-10-26
Online:
2020-11-02
摘要:
为揭示立枯丝核菌(Rhizoctonia solani)侵染条件下结缕草(Zoysia japonica)中水杨酸(SA)合成的主要途径,通过同源比对法识别关键调控基因,依据病程下的转录模式鉴定响应通路,测试SA浓度及苯丙氨酸解氨酶(PAL)活性验证表达效果。ZjPAL1-ZjPAL5作为典型PAL等位基因,对应Unigene于根部发病后呈现持续上调,在转录水平积极响应侵染。异分支酸合成酶基因中仅监测到ZjICS1表达,且丰度始终不足ZjPAL1-ZjPAL5的10%,并随侵染加深趋于下调。菌丝体侵入根部内皮层后引起PAL活性严重减弱,伴随其减弱程度加剧,途径终产物SA浓度的下降也加快;但同时在尚未感染的叶片中SA浓度却随PAL活性提升保持高水平。PAL基因调控的苯丙氨酸途径是R. solani侵染下结缕草SA合成主导途径,响应强度随侵染深入而增强,PAL活性下降会显著降低SA水平。
宿强, 左慧, 晁跃辉, 曾会明. 结缕草响应立枯丝核菌侵染的SA合成途径鉴定[J]. 生物技术通报, 2020, 36(10): 32-39.
XU Qiang, ZUO Hui, CHAO Yue-hui, ZENG Hui-ming. Identification of SA Synthetic Pathways Responding to Rhizoctonia solani Infection in Zoysia japonica[J]. Biotechnology Bulletin, 2020, 36(10): 32-39.
索引基因及关联家族 | 结缕草基因座基因座编号 | 基因名称 |
---|---|---|
AtPAL1(AT2G37040)AtPAL2(AT3G53260) AtPAL3(AT5G04230)AtPAL4(AT3G10340) HOM04D000680家族含276条双子叶植物序列 HOM04M000387家族含212条单子叶植物序列 | Zjn_sc00017.1.g00060.1.sm.mkhc Zjn_sc00007.1.g11910.1.sm.mkhc Zjn_sc00004.1.g04560.1.sm.mkhc Zjn_sc00017.1.g00050.1.sm.mkhc Zjn_sc00004.1.g04570.1.sm.mkhc Zjn_sc00103.1.g00580.1.am.mk Zjn_sc00007.1.g11880.1.am.mk Zjn_sc00007.1.g11890.1.sm.mk Zjn_sc06393.1.g00010.1.am.mk | ZjPAL1 ZjPAL2 ZjPAL3 ZjPAL4 ZjPAL5 ZjPAL6 ZjPAL7 ZjPAL8 ZjPAL9 |
AtICS1(AT1G74710)AtICS2(AT1G18870) HOM04D003911家族含57条双子叶植物序列 HOM04M000507家族含18条单子叶植物序列 | Zjn_sc00039.1.g05120.1.sm.mkhc Zjn_sc00018.1.g05620.1.am.mkhc Zjn_sc00039.1.g05130.1.sm.mkhc Zjn_sc00018.1.g05610.1.sm.mkhc | ZjICS1 ZjICS2 ZjICS3 ZjICS4 |
表1 结缕草中目标功能基因识别结果及命名
索引基因及关联家族 | 结缕草基因座基因座编号 | 基因名称 |
---|---|---|
AtPAL1(AT2G37040)AtPAL2(AT3G53260) AtPAL3(AT5G04230)AtPAL4(AT3G10340) HOM04D000680家族含276条双子叶植物序列 HOM04M000387家族含212条单子叶植物序列 | Zjn_sc00017.1.g00060.1.sm.mkhc Zjn_sc00007.1.g11910.1.sm.mkhc Zjn_sc00004.1.g04560.1.sm.mkhc Zjn_sc00017.1.g00050.1.sm.mkhc Zjn_sc00004.1.g04570.1.sm.mkhc Zjn_sc00103.1.g00580.1.am.mk Zjn_sc00007.1.g11880.1.am.mk Zjn_sc00007.1.g11890.1.sm.mk Zjn_sc06393.1.g00010.1.am.mk | ZjPAL1 ZjPAL2 ZjPAL3 ZjPAL4 ZjPAL5 ZjPAL6 ZjPAL7 ZjPAL8 ZjPAL9 |
AtICS1(AT1G74710)AtICS2(AT1G18870) HOM04D003911家族含57条双子叶植物序列 HOM04M000507家族含18条单子叶植物序列 | Zjn_sc00039.1.g05120.1.sm.mkhc Zjn_sc00018.1.g05620.1.am.mkhc Zjn_sc00039.1.g05130.1.sm.mkhc Zjn_sc00018.1.g05610.1.sm.mkhc | ZjICS1 ZjICS2 ZjICS3 ZjICS4 |
[1] | 宣继萍. 结缕草属(Zoysia Willd. )植物种质资源多样性研究[D]. 南京:南京农业大学, 2008. |
Xuan JP. Study on genetic diversity of Zoysia Willd. germplasm resource[D]. Nanjing: Nanjing Agricultural University, 2008. | |
[2] |
Inokuma C, Sugiura K, Imaizumi N, et al. Transgenic Japanese lawngrass(Zoysia japonica Steud. )plants regenerated from protoplasts[J]. Plant Cell Rep, 1998,17(5):334-338.
URL pmid: 30736568 |
[3] | Burpee L. Biology of Rhizoctonia species associated with turfgrasses[J]. Plant Disease, 1992,76(2):112. |
[4] | Papazlatani C, Rousidou C, Katsoula A, et al. Assessment of the impact of the fumigant dimethyl disulfide on the dynamics of major fungal plant pathogens in greenhouse soils[J]. European Journal of Plant Pathology, 2016,146(2):391-400. |
[5] | Hannukkala AO, Rastas M, Laitinen P, et al. Rhizoctonia solani injuries in oilseed crops in Finland and impacts of different crop management practices on disease incidence and severity[J]. Annals of Applied Biology, 2016,169(2):257-273. |
[6] | Zarlengo PJ. Influence of shading on the response of tall fescue cultivars to Rhizoctonia solani AG-1IA[J]. Plant Disease, 1994,78(2):126. |
[7] | 江绍锋, 王陈骄子, 舒灿伟, 周而勋. 水稻纹枯病菌RsPhm基因的克隆及其表达分析[J]. 中国水稻科学, 2018,32(2):111-118. |
Jiang SF, Wang C, Shu CW, Zhou EX. Cloning and expression analysis of RsPhm gene in rhizoctonia solani AG-1ⅠA of rice sheath blight pathogen[J]. Chin J Rice Sci, 2018,32(2):111-118. | |
[8] | 拓宁, 张君, 邱慧珍. 立枯丝核菌对马铃薯侵染过程的显微结构观察与胞壁降解酶活性的测定[J]. 草业学报, 2015,24(12):74-82. |
Tuo N, Zhang J, Qiu HZ, et al. Pathogenic mechanism of Rhizoctonia solani potato blight I Micro-structure observation of the infection process and measurement of cell wall degradation enzyme activity[J]. Acta Prataculturae Sinica, 2015,24(12):74-82. | |
[9] | 殷萍萍. 日本结缕草响应立枯丝核菌侵染及其转录组学研究[D]. 北京:北京林业大学, 2015. |
Yin PP. Infection and transcripyome analysis of zoysia japonica response to rhizoctonia solani[D]. Beijing:Beijing Forestry University, 2015. | |
[10] | Hadi MR, Balali GR. The effect of salicylic acid on the reduction of Rizoctonia solani damage in the tubers of marfona potato cultivar[J]. American-Eurasian Journal of Agricultural and Environmental Science, 2010,7(4):492-496. |
[11] | Li Z, Shi J, Yang T. Research on salicylic acid-mediated signal transduction pathway of systemic acquired resistance in plant[J]. Chinese Agricultural Science Bulletin, 2006,22, 84-89. |
[12] |
Kumar D. Salicylic acid signaling in disease resistance[J]. Plant Sci, 2014,228:127-134.
URL pmid: 25438793 |
[13] |
Kouzai Y, Kimura M, et al. Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon[J]. New Phytol, 2018,217(2):771-783.
URL pmid: 29048113 |
[14] |
Wildermuth MC. Variations on a theme:Synjournal and modification of plant benzoic acids[J]. Curr Opin Plant Biol, 2006,9(3):288-296.
URL pmid: 16600669 |
[15] |
Chen K, Liu J, Ji R, et al. Biogenic synjournal and spatial distribution of endogenous phytohormones and ginsenosides provide insights on their intrinsic relevance in Panax ginseng[J]. Front Plant Sci, 2018,9:1951.
doi: 10.3389/fpls.2018.01951 URL pmid: 30687354 |
[16] |
Chen Z, Zheng Z, Huang J, et al. Biosynjournal of salicylic acid in plants[J]. Plant Signal Behav, 2009,4(6):493-496.
URL pmid: 19816125 |
[17] |
Wildermuth MC, Dewdney J, Wu G, et al. Isochorismate synthase is required to synthesize salicylic acid for plant defence[J]. Nature, 2001,414(6863):562-565.
URL pmid: 11734859 |
[18] |
Tanaka H, Hirakawa H, Kosugi S, et al. Sequencing and comparative analyses of the genomes of zoysiagrasses[J]. DNA Res, 2016,23(2):171-180.
URL pmid: 26975196 |
[19] |
Zhu C, Ai L, Wang L, et al. De novo Transcriptome analysis of Rhizoctonia solani AG1 IA strain early invasion in Zoysia japonica root[J]. Front Microbiol, 2016,7:708.
URL pmid: 27242730 |
[20] | Dempsey DA, Vlot AC, et al. Salicylic acid biosynjournal and metabolism[J]. Arabidopsis Book, 2011,9:e156. |
[21] |
Van Bel M, Diels T, Vancaester E, et al. PLAZA 4. 0:An integrative resource for functional, evolutionary and comparative plant genomics[J]. Nucleic Acids Res, 2018,46(D1):D1190-D1196.
URL pmid: 29069403 |
[22] |
Moreno-Hagelsieb G, Latimer K. Choosing BLAST options for better detection of orthologs as reciprocal best hits[J]. Bioinformatics, 2007,24(3):319-324.
URL pmid: 18042555 |
[23] |
Mitchell AL, et al. InterPro in 2019:Improving coverage, classification and access to protein sequence annotations[J]. Nucleic Acids Res, 2019,47(D1):D351-D360.
URL pmid: 30398656 |
[24] | Marchler-Bauer A, Bo Y, Han L, et al. CDD/SPARCLE:Functional classification of proteins via subfamily domain architectures[J]. Nucleic Acids Res, 2017,45(D1):D200-D203. |
[25] |
Bailey TL, Johnson J, Grant CE, et al. The MEME suite[J]. Nucleic Acids Research, 2015,43(W1):W39-W49.
URL pmid: 25953851 |
[26] | Tamura K, Peterson D, Peterson N, et al. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011,28(10):2731-2739. |
[27] | Wang Y, Tang H, Debarry JD, et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Research, 2012,40(7):e49. |
[28] |
Mortazavi A, Williams BA, Mccue K, et al. Mapping and quantifying mammalian transcriptomes by RNA-Seq[J]. Nat Methods, 2008,5(7):621-628.
doi: 10.1038/nmeth.1226 URL pmid: 18516045 |
[29] | Chen C, Chen H, He Y, et al. TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface[J]. BioRxiv, 2018: 289660. |
[30] | Lisker N, Cohen L, et al. Fungal infections suppress ethylene-induced phenylalanine ammonia-lyase activity in grapefruits[J]. Physiological Plant Pathology, 1983,22(3):331-338. |
[31] |
Rekhter D, Ludke D, Ding Y, et al. Isochorismate-derived biosynjournal of the plant stress hormone salicylic acid[J]. Science, 2019,365(6452):498-502.
URL pmid: 31371615 |
[32] |
Torrens-Spence MP, Bobokalonova A, Carballo V, et al. PBS3 and EPS1 complete salicylic acid biosynjournal from isochorismate in Arabidopsis[J]. Molecular Plant, 2019,12(12):1577-1586.
URL pmid: 31760159 |
[33] |
Cochrane FC, Davin LB, Lewis NG. The Arabidopsis phenylalanine ammonia lyase gene family:Kinetic characterization of the four PAL isoforms[J]. Phytochemistry, 2004,65(11):1557-1564.
doi: 10.1016/j.phytochem.2004.05.006 URL pmid: 15276452 |
[34] |
An C, Mou Z. Salicylic acid and its function in plant immunity[J]. J Integr Plant Biol, 2011,53(6):412-428.
URL pmid: 21535470 |
[35] |
Garcion C, Lohmann A, Lamodiere E, et al. Characterization and biological function of the ISOCHORISMATE SYNTHASE2 gene of Arabidopsis[J]. Plant Physiol, 2008,147(3):1279-1287.
URL pmid: 18451262 |
[36] |
Shine MB, Yang JW, El-Habbak M, et al. Cooperative functioning between phenylalanine ammonia lyase and isochorismate synthase activities contributes to salicylic acid biosynjournal in soybean[J]. New Phytol, 2016,212(3):627-636.
URL pmid: 27411159 |
[1] | 宋本超, 赵冬梅, 杨志辉, 张岱, 赵志, 朱杰华. 马铃薯黑痣病菌拮抗菌的筛选鉴定及生防因子分析[J]. 生物技术通报, 2019, 35(8): 9-16. |
[2] | 赵方东, 曾会明. 机械损伤日本结缕草转录组中相关转录因子的初步分析[J]. 生物技术通报, 2019, 35(4): 7-12. |
[3] | 叶日英, 孙力军, 王雅玲, 吉宏武, 徐德峰, 廖建萌. 纳豆菌发酵制作鱼内脏有机肥与抑制立枯丝核菌的应用[J]. 生物技术通报, 2016, 32(11): 241-247. |
[4] | 可祥, 农钧琇, 石大林, 马礼鹏, 李京, 韦善君. 日本结缕草‘胶东青’DREB2.2基因克隆及表达模式研究[J]. 生物技术通报, 2016, 32(1): 115-123. |
[5] | 王蓓,牛世全,达文燕,李海云,胡娇龙,赵国杰. 河西走廊盐碱土壤中抗立枯丝核菌的放线菌筛选[J]. 生物技术通报, 2014, 0(1): 156-160. |
[6] | 王莹;罗国坤;韩烈保;. 结缕草胁迫诱导型启动子Rd29A的克隆及功能鉴定[J]. , 2011, 0(08): 118-122. |
[7] | 代小梅;程晓霞;曾会明;韩烈保;. 日本结缕草总RNA提取和mRNA分离方法的优化[J]. , 2010, 0(12): 132-136. |
[8] | 张瑜;杨知建;张志扬;张志飞;. 不同浓度激素对野生细叶结缕草愈伤组织的诱导与分化的影响[J]. , 2007, 0(02): 143-146. |
[9] | . 生物防治[J]. , 1997, 0(04): 55-56. |
[10] | Richard Broglie. 抗病转基因植物的产生[J]. , 1994, 0(03): 6-7. |
[11] | . 生物防治[J]. , 1994, 0(02): 91-93. |
[12] | 孙国凤;. 从结缕草的裸细胞再生植株[J]. , 1991, 0(11): 12-13. |
[13] | . 生物防治因子[J]. , 1988, 0(02): 78-82. |
[14] | . 生物防治因子[J]. , 1988, 0(01): 78-81. |
[15] | . 农业其它[J]. , 1987, 0(10): 80-86. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||