生物技术通报 ›› 2020, Vol. 36 ›› Issue (7): 23-31.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0205
冯逸龙, 张文利
收稿日期:
2020-03-02
出版日期:
2020-07-26
发布日期:
2020-07-28
作者简介:
冯逸龙,男,博士研究生,研究方向:植物G4生物学功能;E-mail:635156082@qq.com
基金资助:
FENG Yi-long, ZHANG Wen-li
Received:
2020-03-02
Published:
2020-07-26
Online:
2020-07-28
摘要: 鸟嘌呤(G)四联体(G-quadruplex,G4),是指在DNA或RNA链中,富含G碱基的区域通过Hoogsteen氢键配对使G环互联形成的一种四链二级结构。人和动物的研究结果表明,G4广泛参与了DNA复制、转录、翻译和端粒结构维持等一系列基本的生物学功能。相比之下,植物G4生物学功能研究严重滞后。综述了人和动物DNA G4的研究方法,生物学功能及其可能的作用机制等研究进展;总结了植物G4的研究现状及其可能的生物功能;最后展望了G4在人类疾病诊断和治疗,农用物分子育种等方面的应用前景。
冯逸龙, 张文利. DNA鸟嘌呤四联体研究进展[J]. 生物技术通报, 2020, 36(7): 23-31.
FENG Yi-long, ZHANG Wen-li. Research Progress on DNA Guanine Quadruplex[J]. Biotechnology Bulletin, 2020, 36(7): 23-31.
[1] 谢君, 刘次全, 屈良鸽. 以Hoogsteen氢键形成的pNA(T)· nNA(AT)三螺旋更稳定[J]. 科学通报, 2013, 20(48):2141-2144. [2] Gellert M, Lipsett MN, Davies DR.Helix formation by Guanylic Acid[J]. Proc Natl Acad Sci USA, 1962, 48:2013-2018. [3] Henderson E, Kang SG.Identification of non-telomeric G4-DNA binding proteins in human, E. coli, yeast, and Arabidopsis[J]. Mol Cells, 2002, 14:404-410. [4] Robert B, Clarke MM, Dean WL, et al.Polyethylene glycol binding alters human telomere G-quadruplex structure by conformational selection[J]. Nucleic Acids Res, 2013, 41(16):7934-7946. [5] Biffi G, Tannahill D, Mccafferty J, et al.Quantitative visualization of DNA G-quadruplex structures in human cells[J]. Nat Chem, 2013, 5(3):182-186. [6] Debnath M, Chakraborty S, Kumar YP, et al.Ionophore constructed from non-covalent assembly of a G-quadruplex and liponucleoside transports K+-ion across biological membranes[J]. Nat Commun, 2020, 11(1):469. [7] Micheli E, Altieri A, Cianni L, et al.Perylene and coronene derivatives binding to G-rich promoter oncogene sequences efficiently reduce their expression in cancer cells[J]. Biochimie, 2016, 125:223-231. [8] Belotserkovskii BP, Shin JHS, Hanawalt PC.Strong transcription blockage mediated by R-loop formation within a G-rich homopurine-homopyrimidine sequence localized in the vicinity of the promoter[J]. Nucleic Acids Res, 2017, 45(11):6589-6599. [9] Sngar A, Vandana JJ, Chambers VS, et al.Structure of a(3+1)hybrid G-quadruplex in the PARP1 promoter[J]. Nucleic Acids Res, 2019, 47(3):1564-1572. [10] Mao SQ, Ghanbarian AT, Spiegel J, et al.DNA G-quadruplex structures mold the DNA methylome[J]. Nat Struct & Mol Biol, 2018, 25:951-957. [11] Mukherjee AK, Sharma S, Chowdhury S.Non-duplex G-Quadruplex structures emerge as mediators of epigenetic modifications[J]. Trends Genet, 2019, 35(2):129-144. [12] Jana J, Mondal S, Bhattacharjee P, et al.Chelerythrine down regulates expression of VEGFA, BCL2 and KRAS by arresting G-Quadruplex structures at their promoter regions[J]. Sci Rep, 2017, 7:40706. [13] Rigo R, Sissi C.Characterization of G4-G4 crosstalk in the c-KIT promoter region[J]. Biochemistry, 2017, 56(33):4309-4312. [14] Hänsel-Hertsch R, Antonin MD, Balasubramanian S.DNA G-quadruplexes in the human genome:detection, functions and therapeutic potential[J]. Nat Rev Mol Cell Biol, 2017, 18(5):279-284. [15] Reed AJ, Connelly RP, Williams A, et al.Label-free pathogen detection by a deoxyribozyme cascade with visual signal readout[J]. Sensor Actuat B-Chem, 2019, 282:945-951. [16] Han Y, Zhang F, Gong H, et al.Double G-quadruplexes in a copper nanoparticle based fluorescent probe for determination of HIV genes[J]. Mikrochim Acta, 2018, 186(1):30. [17] Moruno-Manchon JF, Koellhoffer EC, Gopakumar J, et al.The G-quadruplex DNA stabilizing drug pyridostatin promotes DNA damage and downregulates transcription of Brca1 in neurons[J]. Aging, 2017, 9(9):1957-1970. [18] Zuffo M, Stucchi A, Campos-Salinas J, et al.Carbohydrate-naphthalene diimide conjugates as potential antiparasitic drugs:Synthesis, evaluation and structure-activity studies[J]. Eur J Med Chem, 2019, 163:54-66. [19] Asamitsu S, Yabuki Y, Ikenoshita S, et al.Pharmacological prospects of G-quadruplexes for neurological diseases using porphyrins[J]. Biochem Biophys Res Commun, 2020. doi:https://doi.org/10.1016/j.bbrc.2020.01.054. [20] Xu H, Di Antonio M, McKinney S, et al. CX-5461 is a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours[J]. Nat Commun, 2017, 8:14432. [21] Marsico G, Chambers VS, Sahakyan AB, et al.Whole genome experimental maps of DNA G-quadruplexes in multiple species[J]. Nucleic Acids Res, 2019, 47(8):3862-3874. [22] Griffin BD, Bass HW.Review:Plant G-quadruplex(G4)motifs in DNA and RNA;abundant, intriguing sequences of unknown function[J]. Plant Sci, 2018, 269:143-147. [23] Yadav V, Hemansi, Kim N, et al.G quadruplex in plants:A ubiquitous regulatory element and its biological relevance[J]. Front Plant Sci, 2017, 8:1163. [24] Shakiba E, Edwards JD, Jodari F, et al.Genetic architecture of cold tolerance in rice(Oryza sativa)determined through high resolution genome-wide analysis[J]. PLoS One, 2017, 12(3):e0172133. [25] Andorf CM, Kopylov M, Dobbs D, et al.G-quadruplex(G4)motifs in the maize(Zea mays L.)genome are enriched at specific locations in thousands of genes coupled to energy status, hypoxia, low sugar, and nutrient deprivation[J]. J Genet Genomics, 2014, 41(12):627-647. [26] Cho H, Cho HS, Nam H, et al.Translational control of phloem development by RNA G-quadruplex-JULGI determines plant sink strength[J]. Nat Plants, 2018, 4(6):376-390. [27] Sun D, Hurley LH.The importance of negative superhelicity in inducing the formation of G-quadruplex and i-Motif structures in the c-Myc promoter:Implications for drug targeting and control of gene expression[J]. J Med Chem, 2009, 52(9):2863-2874. [28] Parkinson GN, Lee MP, Neidle S.Crystal structure of parallel quadruplexes from human telomeric DNA[J]. Nature, 2002, 417(6891):876-880. [29] Garg R, Aggarwal J, Thakkar B.Genome-wide discovery of G-quadruplex forming sequences and their functional relevance in plants[J]. Sci Rep, 2016, 6:28211. [30] Chen MC, Tippana R, Demeshkina NA, et al.Structural basis of G-quadruplex unfolding by the DEAH/RHA helicase DHX36[J]. Nature, 2018, 558(7710):465-469. [31] Suseela YV, Narayanaswamy N, Pratihar S, et al.Far-red fluorescent probes for canonical and non-canonical nucleic acid structures:current progress and future implications[J]. Chem Soc Rev, 2018, 47(3):1098-1131. [32] Hänsel-Hertsch R, Spiegel J, Marsico G, et al.Genome-wide mapping of endogenous G-quadruplex DNA structures by chromatin immunoprecipitation and high-throughput sequencing[J]. Nat Protoc, 2018, 13(3):551-564. [33] Sun D, Hurley LH.Biochemical techniques for the characterization of G-quadruplex structures:EMSA, DMS footprinting, and DNA polymerase stop assay[J]. Methods Mol Biol, 2010, 608:65-79. [34] Armond RD, Wood S, Sun D, et al.Evidence for the presence of a guanine quadruplex forming region within a polypurine tract of the hypoxia inducible factor 1R promoter[J]. Biochemistry, 2005, 44:16341-16350. [35] Sen D, Gilbert W.A sodium-potassium switch in the formation of four-stranded G4-DNA[J]. Nature, 1990, 344:410-414. [36] Behmand B, Balanikas E, Martinez-Fernandez L, et al.Potassium ions enhance guanine radical generation upon absorption of low energy photons by G-quadruplexes and modify their reactivity[J]. J Phys Chem Lett, 2020, 11(4):1305-1309. [37] Zhang ML, Xu YP, Kumar A, et al.Studying the potassium-induced G-quadruplex DNA folding process using microscale thermophoresis[J]. Biochemistry, 2019, 58(38):3955-3959. [38] Ma G, Yu Z, Zhou W, et al.Investigation of Na+ and K+ competitively binding with a G-quadruplex and discovery of a stable K+-Na+-quadruplex[J]. J Phys Chem B, 2019, 123(26):5405-5411. [39] Kan ZY, Lin Y, Wang F, et al.G-quadruplex formation in human telomeric(TTAGGG)4 sequence with complementary strand in close vicinity under molecularly crowded condition[J]. Nucleic Acids Res, 2007, 35(11):3646-3653. [40] Qin Y, Rezler EM, Gokhale V, et al.Characterization of the G-quadruplexes in the duplex nuclease hypersensitive element of the PDGF-A promoter and modulation of PDGF-A promoter activity by TMPyP4[J]. Nucleic Acids Res, 2007, 35(22):7698-7713. [41] Dexheimer TS, Sun D, Hurley LH.Deconvoluting the structural and drug-recognition complexity of the G-quadruplex-forming region upstream of the bcl-2 P1 Promoter[J]. J Am Chem Soc, 2006, 128(16):5404-5415. [42] Guo K, Pourpak A, Beetz-Rogers K, et al.Formation of pseudosym-metrical G-quadruplex and i-Motif structures in the proximal promoter region of the RET oncogene[J]. J Am Chem Soc, 2007, 129(33):10220-10228. [43] Cheng M, Cheng Y, Hao J, et al.Loop permutation affects the topology and stability of G-quadruplexes[J]. Nucleic Acids Res, 2018, 46(18):9264-9275. [44] Huang ZL, Dai J, Luo WH, et al.Identification of G-quadruplex-binding protein from the exploration of RGG motif/G-quadruplex interactions[J]. J Am Chem Soc, 2018, 140(51):17945-17955. [45] Henderson A, Wu Y, Huang YC, et al.Detection of G-quadruplex DNA in mammalian cells[J]. Nucleic Acids Res, 2014, 42(2):860-869. [46] Fernando H, Rodriguez R, Balasubramanian S.Selective recognition of a DNA G-quadruplex by an engineered antibody[J]. Biochemistry, 2008, 47(36):9365-9371. [47] Liu HY, Zhao Q, Zhang TP, et al.Conformation selective antibody enables genome profiling and leads to discovery of parallel G-quadruplex in human telomeres[J]. Cell Chem Biol, 2016, 23(10):1261-1270. [48] Kwok CK, Marsico G, Balasubramanian. Detecting RNA G-quadruplexes(rG4s)in the transcriptome[J]. CSH Perspect Biol, 2018, 10(7):a032284. [49] Guo JU, Bartel DP.RNA G-quadruplexes are globally unfolded in eukaryotic cells and depleted in bacteria[J]. Science, 2016, 353(6306):5371-5371. [50] Chambers VS, Marsico G, Boutell JM, et al.High-throughput sequencing of DNA G-quadruplex structures in the human genome[J]. Nat Biotechnol, 2015, 33(8):877-881. [51] Hänsel-Hertsch R, Beraldi D, Lensing SV, et al.G-quadruplex structures mark human regulatory chromatin[J]. Nat Genet, 2016, 48(10):1267-1272. [52] Smith FW, Feigon J.Quadruplex structure of Oxytricha telomeric DNA oligonucleotides[J]. Nature, 1992, 356(6365):164-168. [53] Smith JS, Chen Q, Yatsunyk LA, et al.Rudimentary G-quadruplex-based telomere capping in Saccharomyces cerevisiae[J]. Nat Struct Mol Biol, 2011, 18(4):478-485. [54] Verma A, Yadav VK, Basundra R, et al.Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells[J]. Nucleic Acids Res, 2009, 37(13):4194-4204. [55] Rodriguez R, Miller KM.Unravelling the genomic targets of small molecules using high-throughput sequencing[J]. Nat Rev Genet, 2014, 15(12):783-796. [56] Nayun Kim.The interplay between G-quadruplex and Transcription[J]. Curr Med Chem, 2019, 26(16):2898-2917. [57] Bugaut A, Balasubramanian S.5'-UTR RNA G-quadruplexes:translation regulation and targeting[J]. Nucleic Acids Res, 2012, 40(11):4727-4741. [58] Raiber EA, Kranaster R, Lam E, et al.A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro[J]. Nucleic Acids Res, 2012, 40(4):1499-1508. [59] Ghosh A, Ekka MK, Tawani A, et al.Restoration of miRNA-149 expression by TmPyP4 induced unfolding of quadruplex within its precursor[J]. Biochemistry, 2019, 58(6):514-525. [60] Hou Y, Li F, Zhang R, et al.Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure[J]. Epigenetics, 2019, 14(9):894-911. [61] Mirkin SM.Expandable DNA repeats and human disease[J]. Nature, 2007, 447(7147):932-940. [62] Maizels N.G4-associated human diseases[J]. EMBO Rep, 2015, 16(8):910-922. [63] Law MJ, Lower KM, Voon HP, et al.ATR-X syndrome protein targets tandem repeats and influences allele-specific expression in a size-dependent manner[J]. Cell, 2010, 143(3):367-378. [64] Biffi G, Tannahill D, Miller J, et al.Elevated levels of G-Quadruplex formation in human stomach and liver cancer tissues[J]. PLoS One, 2014, 9(7):e102711. [65] Tomar JS.In-silico modeling studies of G-quadruplex with soy isoflavones having anticancerous activity[J]. J Mol Model, 2015, 21(8):193. [66] Schiavone D, Guilbaud G, Murat P, et al.Determinants of G quadruplex-induced epigenetic instability in REV1-deficient cells[J]. EMBO J, 2014, 33(21):2507-2520. [67] Fang Y, Chen LF, Lin KD, et al.Characterization of functional relationships of R-loops with gene transcription and epigenetic modifications in rice[J]. Genome Res, 2019, 29(8):1287-1297. [68] Šviković S, Crisp A, Tan-Wong SM, et al.R-loop formation during S phase is restricted by PrimPol-mediated repriming[J]. EMBO J, 2018, 38(3):e99793. [69] Tan J, Wang X, Phoon L, et al.Resolution of ROS-induced G-quadruplexes and R-loops at transcriptionally active sites is dependent on BLM helicase[J]. FEBS Lett, 2020. [70] Paeschke K, Capra JA, Zakian VA.DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase[J]. Cell, 2011, 145(5):678-691. [71] Duquette ML, Huber MD, Maizels N.G-rich proto-oncogenes are targeted for genomic instability in B-cell lymphomas[J]. Cancer Res, 2007, 67(6):2586-2594. [72] Ge F, Wang Y, Li H, et al.Plant-GQ:An integrative database of G-Quadruplex in plant[J]. J Comput Biol, 2019, 26(9):1013-1019. [73] Garg R, Aggarwal J, Thakkar B.Genome-wide discovery of G-quadruplex forming sequences and their functional relevance in plants[J]. Sci Rep, 2016, 6:28211. [74] Yadav V, Hemansi, Kim N, et al.G quadruplex in plants:A ubiquitous regulatory element and its biological relevance[J]. Front Plant Sci, 2017, 8:1163. [75] Zhang Y, Yang M, Duncan S, et al.G-quadruplex structures trigger RNA phase separation[J]. Nucleic Acids Res, 2019, 47(22):11746-11754. [76] McBrayer D, Schoonover M, Long KJ, et al. N-methylmesoporphyrin IX exhibits G-quadruplex specific photocleavage activity[J]. Chem Bio Chem, 2018, 20(15):1924-1927. [77] Wang S, Yue L, Li ZY, et al.Light-induced reversible reconfiguration of DNA-based constitutional dynamic networks:Application to switchable catalysis[J]. Angew Chem Int Ed Engl, 2018, 57(27):8105-8109. [78] Jackowiak P, Hojka-Osinska A, Gasiorek K, et al.Effects of G-quadruplex topology on translational inhibition by tRNA fragments in mammalian and plant systems in vitro[J]. Int J Biochem Cell Biol, 2017, 92:148-154. [79] Wu G, Chen L, Liu W, et al.Molecular recognition of the hybrid-type G-quadruplexes in human telomeres[J]. Molecules, 2019, 24(8):E1578. |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[3] | 韩浩章, 张丽华, 李素华, 赵荣, 王芳, 王晓立. 盐碱胁迫诱导的猴樟酵母cDNA文库构建及CbP5CS上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 236-245. |
[4] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[5] | 姚近东, 汤华妹, 杨文霄, 张丽珊, 林向民. 恩诺沙星胁迫下嗜水气单胞菌的比较蛋白质组学研究[J]. 生物技术通报, 2023, 39(4): 288-296. |
[6] | 李天顺, 李宸葳, 王佳, 朱龙佼, 许文涛. 功能核酸筛选过程中次级文库的有效制备[J]. 生物技术通报, 2023, 39(3): 116-122. |
[7] | 祝瑛萱, 李克景, 何敏, 郑道琼. 酵母模型揭示胁迫因子驱动基因组变异的研究进展[J]. 生物技术通报, 2023, 39(11): 191-204. |
[8] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[9] | 张淼, 杨露露, 贾岩龙, 王天云. DNA甲基化和组蛋白甲基化修饰的表观遗传调控作用研究进展[J]. 生物技术通报, 2022, 38(7): 23-30. |
[10] | 王晨晨, 张凡丽, 陈珮琪, 翁思瑶, 王慧芳, 崔小娟. 哺乳动物DNA甲基转移酶DNMT1和DNMT3结构与功能的研究进展[J]. 生物技术通报, 2022, 38(7): 31-39. |
[11] | 申恒, 刘思慧, 李跃, 李敬涛, 梁文星. 一种用于PCR的番茄DNA快速粗提方法[J]. 生物技术通报, 2022, 38(6): 74-80. |
[12] | 易芳, 来鹏程, 郑希鳌, 胡帅, 高燕丽. Kod DNA聚合酶的制备及纯化研究[J]. 生物技术通报, 2022, 38(5): 183-190. |
[13] | 张雨函, 范熠, 李婷婷, 庞爽, 刘为, 白可喻, 张西美. 基于宏基因组测序的植物叶表微生物富集及DNA提取方法[J]. 生物技术通报, 2022, 38(3): 256-263. |
[14] | 谢田朋, 柳娜, 刘越敏, 曲馨, 薄双琴, 景明. 化肥减量配施中药源植物生长调节剂对当归质量和根际土壤细菌群落的影响[J]. 生物技术通报, 2022, 38(3): 79-91. |
[15] | 董海娇, 杨晓玉, 莫蓓莘, 陈雪梅, 崔洁. 核糖核酸5'端NAD+帽子修饰研究进展[J]. 生物技术通报, 2022, 38(2): 245-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||