生物技术通报 ›› 2021, Vol. 37 ›› Issue (2): 162-173.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0521
孙敬爽1(), 胡瑞阳1, 郑广顺1, 麻文俊2, 许言1, 王军辉2()
收稿日期:
2020-05-05
出版日期:
2021-02-26
发布日期:
2021-02-26
作者简介:
孙敬爽,女,博士,研究方向:林木遗传育种;E-mail: 基金资助:
SUN Jing-shuang1(), HU Rui-yang1, ZHENG Guang-shun1, MA Wen-jun2, XU Yan1, WANG Jun-hui2()
Received:
2020-05-05
Published:
2021-02-26
Online:
2021-02-26
摘要:
高效遗传转化技术是植物重要性状功能基因鉴定的前提和转基因育种的基础。随着纳米生物技术的发展,以纳米载体介导的植物转基因技术已显示出巨大的应用潜力。综述了国内外应用于植物纳米载体的类型、与外源基因的结合方式以及传输细胞的原理,重点阐述了影响纳米基因载体性能与转化效率的重要因素,以及纳米载体介导外源基因转化植物细胞的方法,分析了纳米载体介导法与其他转基因方法的特点和优势,并提出纳米载体介导的转化技术应加强稳定遗传转化、基因编辑与植物原位转化等方面探索研究,旨为植物遗传转化技术和方法提供新的思路。
孙敬爽, 胡瑞阳, 郑广顺, 麻文俊, 许言, 王军辉. 纳米载体介导的植物遗传转化研究现状和前景[J]. 生物技术通报, 2021, 37(2): 162-173.
SUN Jing-shuang, HU Rui-yang, ZHENG Guang-shun, MA Wen-jun, XU Yan, WANG Jun-hui. Research Progress and Prospect of Plant Genetic Transformation Mediated by Nano-gene Vector[J]. Biotechnology Bulletin, 2021, 37(2): 162-173.
图1 应用于植物或动物外源基因转化的常见纳米粒子(引自[41]) Bio-inspired:生物分子纳米粒子;Carbon-based NPs:以碳原子为单元的纳米粒子;Silicon-based NPs:以硅为单元的纳米粒子;Polymeric NPs:聚合物纳米粒子;Metalic/Magnetic NPs:磁性纳米粒子
纳米载体类型 | 纳米粒子 | 纳米粒子 特性 | 功能修饰 | 转入植物 细胞途径 | 转基因植株 (组织或细胞) | 转入基因 | 转基因植株 表达特性 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
无机物纳米材料 | 四氧化三铁(Fe3O4) | 超顺磁性,外加磁场条件靶向性强 | PEI修饰 | 外加磁场 作用 | 棉花(Gossypium hirsutum)花粉 | BtΔα·Cpti基因 | 稳定性表达,通过杂交获得抗虫转基因棉花 | [ |
未经修饰 | 悬浮细胞电击穿孔后直接转化 | 水稻悬浮细胞(Oryza sativa) | GFP质粒 | 瞬时表达 | [ | |||
PEI修饰 | 外加磁场作用 | 拟南芥(A. thaliana)原生质体 | GFP质粒 | 瞬时表达 | [ | |||
磁性金纳米粒子(GNP) | 超顺磁性,外加磁场条件靶向性强 | 异硫氰酸荧光素修饰(FITC) | 超声波作用 | 油菜悬浮细胞和原生质体(Brassica napus var.Jec Neaf ) | GUS质粒 | 稳定表达 | [ | |
介孔二氧化硅(MSN) | 比表面积大,比孔容大,介孔孔径可调节 | 金纳米粒子包裹 | 基因枪 | 烟草(N. tabacum L.)子叶、玉米(Zea. mays)未成熟胚 | GFP蛋白 | 稳定表达 | [ | |
金纳米粒子覆盖 | 基因枪 | 洋葱(Allium cepa)表皮细胞 | GFP蛋白和mCherry蛋白 | 瞬时表达 | [ | |||
金纳米粒子覆盖 | 基因枪 | 玉米(Z. mays)胚 | DsRed2质粒和Loxp蛋白 | 瞬时表达 | [ | |||
TMAPS等有机物修饰 | 直接浸染 | 拟南芥(A. thaliana)根 | mCherry质粒 | 46.5%瞬时表达 | [ | |||
单壁碳纳米管(SWNT) | 高深径比,可塑性和生物兼容性强 | 有机物修饰 | 叶片组培孵育 | 烟草(N. tabacum L.)叶子 | nptⅡ基因 | 与组培培养结合获得了转 nptⅡ基因植株,转化率6% | [ | |
纯化单壁碳纳米管 | 直接叶片浸染 | 烟草(N. tabacum L.)、芥菜(Eruca sativa)、小麦(Triticum aestivum)、棉花(G. hirsutum) | GFP-siRNA | 实现在非模式植物基因的转录后沉默,瞬时沉默率95%; | [ | |||
羧化壳聚糖(CS)等有机物的修饰 | 直接叶片浸染 | 芥菜(E. sativa)、豆瓣菜(Nasturtium officinale)、烟草(N. tabacum L.)、菠菜(Spinacia oleracea) | YFP质粒 | 实现外源基因转化叶绿体质体基因组的 瞬时表达 | [ | |||
聚乙烯亚胺(PEI)功能修饰 | 直接叶片浸染 | 烟草(N. tabacum L.)、棉花(G.hirsutum)、小麦(T. aestivum)、芥菜(E. sativa)、 | GFP质粒 | 实现多种非模式植物瞬时转染 | [ | |||
层状双氢氧化物(LDH-NS) | 典型的层状结构,一般为六角形纳米片,厚度0.5-.0nm, 粒径30-60 nm | 片层间为阴离子乳酸修饰 | 叶面喷洒 | 拟南芥(A. thaliana)和烟草(N. tabacum L.) | dsRNA | 使PMMoV和CMV同源基因沉默,延长植物抗虫效果 | [ | |
碳纳米点(CD) | 类圆球形,<10 nm粒子 | 聚乙二醇(PEG)功能修饰 | 叶面喷洒 | 小麦(T. estivum) | GFP、Cas9和gRNA | SPO11 基因编辑,实现了作物的基因编辑 | [ | |
ZnS量子点 | 粒径小仅3-5 nm | 多聚赖氨酸(poly-L-lysine)修饰 | 超声波处理 | 烟草(N. tabacum L.)悬浮细胞 | GUS质粒 | GUS基因稳定表达 | [ | |
天然高分子有机物 | 淀粉纳米粒子(StNP) | 50-100nm,生物降解与生物相容性好 | 多聚赖氨酸(poly-L-lysine)修饰 | 超声波处理悬浮细胞后转染 | 盾叶薯蓣(Dioscrea zigiberensis)悬浮细胞 | GFP质粒 | 瞬时表达和稳定表达 | [ |
多聚赖氨酸(poly-L-lysine)和水溶性量子点CdSe) | 超声波处理悬浮细胞后转染 | 麻枫树(J. curcas)悬浮细胞 | GFP质粒 | 瞬时表达 | [ | |||
多聚赖氨酸(poly-L-lysine)和水溶性量子点CdSe) | 与愈伤组织共孵育 | 麻枫树(Jatropha curcas)愈伤组织 | GFP质粒 | 稳定表达 | [ | |||
壳聚糖(CS) | 需要化学或生物学修饰提高在溶液中的稳定性 | 未修饰 | 共孵育 | 拟南芥(A. thaliana)原生质体 | GFP质粒 | 瞬时表达 | [ | |
细胞穿膜肽(CPPs) | 由10-30个氨基酸组成的短肽,有较强的跨膜转运能力 | 聚阳离子和细胞穿膜肽融合 | 叶片浸染 | 烟草(N. tabacum L.)和拟南芥(A. thaliana)叶片 | GFP和荧光素酶基因 | 瞬时表达 | [ | |
聚阳离子和细胞穿膜肽融合 | 叶片浸染 | 拟南芥(A. thaliana)叶片 | CHS siRNA | YFP和CHS瞬时沉默,抑制低温条件下叶花青素合成 | [ | |||
线粒体靶向肽和细胞穿膜肽融合 | 叶片浸染 | 拟南芥(A. thaliana)叶片 | GFP质粒 | GFP在表皮细胞的线粒体中表达 | [ | |||
人工合成高分子有机物 | 甲基丙烯酸二甲氨基乙酯(DMAEM)聚合物 | 分支带正电荷,与DNA以静电作用结合 | 未修饰 | PEG转化 | 烟草(N. tabacum L.)和角齿藓(Ceratodon purpureus)原生质体 | YFP和GFP质粒 | 瞬时表达和稳定表达 | [ |
磷酸钙纳米粒子(CaPNPs) | 20-50 nm,钙离子的渗透不平衡使负载DNA逃逸内含体,通过核孔。 | 未修饰 | 胚轴组培转染 | 芥菜(Brassica juncea L.)胚轴外植体培养物 | GUS质粒 | 80.7%稳定转化 | [ | |
阳离子荧光纳米粒子 | 水溶性并含有荧光发色团 | 未修饰 | 幼苗根浸染 | 拟南芥(A. thaliana)根和幼苗 | dsRNA | SAM基因沉默表现型发生改变 | [ | |
荧光共轭聚合物纳米粒子 | 水溶液稳定悬浮 | 未修饰 | 浸染 | 烟草(N. tabacum L.)原生质体 | SiRNA | 抑制CesA-1基因表达,丧失细胞壁再生能力 | [ |
表1 介导植物遗传转化的纳米载体类型、特性、功能修饰、转入植物细胞途径及基因表达情况
纳米载体类型 | 纳米粒子 | 纳米粒子 特性 | 功能修饰 | 转入植物 细胞途径 | 转基因植株 (组织或细胞) | 转入基因 | 转基因植株 表达特性 | 参考 文献 |
---|---|---|---|---|---|---|---|---|
无机物纳米材料 | 四氧化三铁(Fe3O4) | 超顺磁性,外加磁场条件靶向性强 | PEI修饰 | 外加磁场 作用 | 棉花(Gossypium hirsutum)花粉 | BtΔα·Cpti基因 | 稳定性表达,通过杂交获得抗虫转基因棉花 | [ |
未经修饰 | 悬浮细胞电击穿孔后直接转化 | 水稻悬浮细胞(Oryza sativa) | GFP质粒 | 瞬时表达 | [ | |||
PEI修饰 | 外加磁场作用 | 拟南芥(A. thaliana)原生质体 | GFP质粒 | 瞬时表达 | [ | |||
磁性金纳米粒子(GNP) | 超顺磁性,外加磁场条件靶向性强 | 异硫氰酸荧光素修饰(FITC) | 超声波作用 | 油菜悬浮细胞和原生质体(Brassica napus var.Jec Neaf ) | GUS质粒 | 稳定表达 | [ | |
介孔二氧化硅(MSN) | 比表面积大,比孔容大,介孔孔径可调节 | 金纳米粒子包裹 | 基因枪 | 烟草(N. tabacum L.)子叶、玉米(Zea. mays)未成熟胚 | GFP蛋白 | 稳定表达 | [ | |
金纳米粒子覆盖 | 基因枪 | 洋葱(Allium cepa)表皮细胞 | GFP蛋白和mCherry蛋白 | 瞬时表达 | [ | |||
金纳米粒子覆盖 | 基因枪 | 玉米(Z. mays)胚 | DsRed2质粒和Loxp蛋白 | 瞬时表达 | [ | |||
TMAPS等有机物修饰 | 直接浸染 | 拟南芥(A. thaliana)根 | mCherry质粒 | 46.5%瞬时表达 | [ | |||
单壁碳纳米管(SWNT) | 高深径比,可塑性和生物兼容性强 | 有机物修饰 | 叶片组培孵育 | 烟草(N. tabacum L.)叶子 | nptⅡ基因 | 与组培培养结合获得了转 nptⅡ基因植株,转化率6% | [ | |
纯化单壁碳纳米管 | 直接叶片浸染 | 烟草(N. tabacum L.)、芥菜(Eruca sativa)、小麦(Triticum aestivum)、棉花(G. hirsutum) | GFP-siRNA | 实现在非模式植物基因的转录后沉默,瞬时沉默率95%; | [ | |||
羧化壳聚糖(CS)等有机物的修饰 | 直接叶片浸染 | 芥菜(E. sativa)、豆瓣菜(Nasturtium officinale)、烟草(N. tabacum L.)、菠菜(Spinacia oleracea) | YFP质粒 | 实现外源基因转化叶绿体质体基因组的 瞬时表达 | [ | |||
聚乙烯亚胺(PEI)功能修饰 | 直接叶片浸染 | 烟草(N. tabacum L.)、棉花(G.hirsutum)、小麦(T. aestivum)、芥菜(E. sativa)、 | GFP质粒 | 实现多种非模式植物瞬时转染 | [ | |||
层状双氢氧化物(LDH-NS) | 典型的层状结构,一般为六角形纳米片,厚度0.5-.0nm, 粒径30-60 nm | 片层间为阴离子乳酸修饰 | 叶面喷洒 | 拟南芥(A. thaliana)和烟草(N. tabacum L.) | dsRNA | 使PMMoV和CMV同源基因沉默,延长植物抗虫效果 | [ | |
碳纳米点(CD) | 类圆球形,<10 nm粒子 | 聚乙二醇(PEG)功能修饰 | 叶面喷洒 | 小麦(T. estivum) | GFP、Cas9和gRNA | SPO11 基因编辑,实现了作物的基因编辑 | [ | |
ZnS量子点 | 粒径小仅3-5 nm | 多聚赖氨酸(poly-L-lysine)修饰 | 超声波处理 | 烟草(N. tabacum L.)悬浮细胞 | GUS质粒 | GUS基因稳定表达 | [ | |
天然高分子有机物 | 淀粉纳米粒子(StNP) | 50-100nm,生物降解与生物相容性好 | 多聚赖氨酸(poly-L-lysine)修饰 | 超声波处理悬浮细胞后转染 | 盾叶薯蓣(Dioscrea zigiberensis)悬浮细胞 | GFP质粒 | 瞬时表达和稳定表达 | [ |
多聚赖氨酸(poly-L-lysine)和水溶性量子点CdSe) | 超声波处理悬浮细胞后转染 | 麻枫树(J. curcas)悬浮细胞 | GFP质粒 | 瞬时表达 | [ | |||
多聚赖氨酸(poly-L-lysine)和水溶性量子点CdSe) | 与愈伤组织共孵育 | 麻枫树(Jatropha curcas)愈伤组织 | GFP质粒 | 稳定表达 | [ | |||
壳聚糖(CS) | 需要化学或生物学修饰提高在溶液中的稳定性 | 未修饰 | 共孵育 | 拟南芥(A. thaliana)原生质体 | GFP质粒 | 瞬时表达 | [ | |
细胞穿膜肽(CPPs) | 由10-30个氨基酸组成的短肽,有较强的跨膜转运能力 | 聚阳离子和细胞穿膜肽融合 | 叶片浸染 | 烟草(N. tabacum L.)和拟南芥(A. thaliana)叶片 | GFP和荧光素酶基因 | 瞬时表达 | [ | |
聚阳离子和细胞穿膜肽融合 | 叶片浸染 | 拟南芥(A. thaliana)叶片 | CHS siRNA | YFP和CHS瞬时沉默,抑制低温条件下叶花青素合成 | [ | |||
线粒体靶向肽和细胞穿膜肽融合 | 叶片浸染 | 拟南芥(A. thaliana)叶片 | GFP质粒 | GFP在表皮细胞的线粒体中表达 | [ | |||
人工合成高分子有机物 | 甲基丙烯酸二甲氨基乙酯(DMAEM)聚合物 | 分支带正电荷,与DNA以静电作用结合 | 未修饰 | PEG转化 | 烟草(N. tabacum L.)和角齿藓(Ceratodon purpureus)原生质体 | YFP和GFP质粒 | 瞬时表达和稳定表达 | [ |
磷酸钙纳米粒子(CaPNPs) | 20-50 nm,钙离子的渗透不平衡使负载DNA逃逸内含体,通过核孔。 | 未修饰 | 胚轴组培转染 | 芥菜(Brassica juncea L.)胚轴外植体培养物 | GUS质粒 | 80.7%稳定转化 | [ | |
阳离子荧光纳米粒子 | 水溶性并含有荧光发色团 | 未修饰 | 幼苗根浸染 | 拟南芥(A. thaliana)根和幼苗 | dsRNA | SAM基因沉默表现型发生改变 | [ | |
荧光共轭聚合物纳米粒子 | 水溶液稳定悬浮 | 未修饰 | 浸染 | 烟草(N. tabacum L.)原生质体 | SiRNA | 抑制CesA-1基因表达,丧失细胞壁再生能力 | [ |
[1] | 王瑶, 林木兰, 沈锡辉, 等. 农杆菌介导的木本植物遗传转化[J]. 生物技术通报, 1999,15(6):23-27. |
Wang Y, Lin ML, Shen XH, et al. Xylophyta genetic transformation by Agrobacterium[J]. Biotechnology Information, 1999,15(6):23-27. | |
[2] | Strohm M, Jouanin L, Kunert KJ, et al. Regulation of glutathione synjournal in leaves of transgenic poplar(Populus tremula × Palba)overexpressing glutathione synthetase[J]. The Plant Journal, 1995,7(1):141-145. |
[3] |
Tang W, Sederoff R, Whetten R. Regeneration of transgenic loblolly pine(Pinus taeda L.)from zygotic embryos transformed with Agrobacterium tumefaciens[J]. Planta, 2001,213(6):981-989.
URL pmid: 11722135 |
[4] |
Igasaki T, Mohri T, Ichikawa H, et al. Agrobacterium tumefaciens -mediated transformation of Robinia pseudoacacia[J]. Plant Cell Reports. 2000,19(5):448-453.
URL pmid: 30754881 |
[5] | Van Acker R, Vanholme R, Storme V, et al. Lignin biosynjournal perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana[J]. Biotechnology for Biofuels, 2013,6(1):46-63. |
[6] | 黄海娇, 李慧玉, 姜静. BpAP1转基因白桦中开花相关基因的时序表达[J]. 东北林业大学学报, 2017,45(1):1-6. |
Huang HJ, Li HY, Jiang J. Quantitative expression analysis of several flowering related genes in BpAP1 Transgenic Birch(Betula platyphlla)×Betula pendula)[J]. Journal of Northeast Forestry University, 2017,45(1):1-6. | |
[7] | Huang Y, Diner AM, Karnosky DF. Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer:Larix decidua[J]. In Vitro Cellular & Developmental Biology-Plant, 1991,27(4):201-207. |
[8] | Zeng XH, Morgenstern R, Nyström AM. Nanoparticle-directed sub-cellular localization of doxorubicin and the sensitization breast cancer cells by circumventing GST-mediated drug resistance[J]. Biomaterials, 2014,35(4):1227-1239. |
[9] |
Zhong J, Li L, Zhu X, et al. A smart polymeric platform for multistage nucleus-targeted anticancer drug delivery[J]. Biomaterials, 2015,65:43-55.
doi: 10.1016/j.biomaterials.2015.06.042 URL pmid: 26142775 |
[10] |
Dekiwadia CD, Lawrie AC, Fecondo JV. Peptide-mediated cell penetration and targeted delivery of gold nanoparticles into lysosomes[J]. Journal of Peptide Science, 2012,18(8):527-534.
URL pmid: 22764089 |
[11] |
Davis ME, Zuckerman JE, Choi CHJ, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles[J]. Nature, 2010,464(7291):1067-1070.
doi: 10.1038/nature08956 URL pmid: 20305636 |
[12] |
Yan M, Du J, Gu Z, et al. A novel intracellular protein delivery platform based on single-protein nanocapsules[J]. Nature Nanotechnology, 2010,5(1):48-53.
URL pmid: 19935648 |
[13] | Torney F, Trewyn BG, Lin VSY, et al. Mesoporous silica nanoparticles deliver DNA and chemicals into plants[J]. Nature Nanotechnology, 2007,2(5):295-300. |
[14] |
Joldersma D, Liu Z. Plant genetics enters the nano age?[J]. Journal of Integrative Plant Biology, 2018,60(6):446-447.
doi: 10.1111/jipb.12646 URL pmid: 29484813 |
[15] | 孔倩倩, 李志辉, 王琼, 等. 纳米基因载体在植物遗传转化中的应用[J]. 生物技术通报, 2010(6):6-12. |
Kong QQ, Li ZH, Wang Q, et al. Application of nano-scale genetic carriers in plant transformation[J]. Biotechnology Bulletin, 2010(6):6-12. | |
[16] |
Li Y, Gao J, Zhang C, et al. Stimuli-responsive polymeric nanocarriers for efficient gene delivery[J]. Topics in Current Chemistry, 2017,375(2):27-49.
URL pmid: 28194746 |
[17] |
Mohammad KK, Majid S, Mehrdad B, et al. Chemical coupling as a potent strategy for preparation of targeted bacteriophage-derived gene nanocarriers into eukaryotic cells[J]. Journal of Gene Medicine, 2018,13(11):622-631.
doi: 10.1002/jgm.1617 URL pmid: 22002551 |
[18] | Zhang SM, Jin LJ, Arshad M, et al. Renewable biomaterials as nanocarriers for drug and gene delivery[M]. Cham, Switzerland: Springer International Publishing, 2017. |
[19] | 霍爱玲, 陈金慧, 甄艳, 等. 无机纳米颗粒在植物转化中的应用[J]. 南京林业大学学报:自然科学版, 2016,40(6):162-166. |
Huo AL, Chen JH, Zhen Y, et al. Inorganic nanoparticles as delivery vectors for plant transformation[J]. Journal of Nanjing Forestry University:Natural Sciences Edition, 2016,40(6):162-166. | |
[20] | 王悦敏, 赵嘉兰, 牛亚伟, 等. 无机纳米材料基因载体系统的研究进展[J]. 中国新药杂志, 2017,26(21):59-66. |
Wang YM, Zhao JL, Niu YW, et al. Research progress in inorganic nanomaterials[J]. Chinese Journal of New Drugs, 2017,26(21):59-66. | |
[21] | 霍爱玲, 陈金慧, 甄艳, 等. 有机纳米材料在植物核酸递送中的研究进展[J]. 江苏农业科学, 2017,45(22):9-12. |
Huo AL, Chen JH, Zhen Y, et al. Research progress in organic nanomaterials on nucleic acid delivery in plant[J], Jiangsu Agricultural Science, 2017,45(22):9-12. | |
[22] |
Mao HQ, Roy K, Troungle VL, et al. Chitosan-DNA nanoparticles as gene carriers:synjournal, characterization and transfection efficiency[J]. Journal of Controlled Release:official Journal of the Controlled Release Society, 2001,70(3):399-421.
URL pmid: 11182210 |
[23] | Roy I, Ohulchanskyy TY, Bharali DJ, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers:A nonviral, nanomedicine approach for gene delivery[J]. Proceeding of the National Academy of Science of USA, 2005,102(2):279-284. |
[24] | Scherer F, Anton M, Schillinger U, et al. Magnetofection:enhancing and targeting gene delivery by magnetic force in vitro and in vivo[J]. Gene Therapy, 2002,9(2):102-109. |
[25] |
Zhao X, Meng Z, Wang Y, et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers[J]. Nature Plants, 2017,3(12):956-964.
URL pmid: 29180813 |
[26] |
Haensler J, Szoka FC. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture[J]. Bioconjug Chem, 1993,4(5):372-379.
doi: 10.1021/bc00023a012 URL pmid: 8274523 |
[27] | Jiang L, Ding L, He B, et al. Systemic gene silencing in plants triggered by fluorescent nanoparticle-delivered double-stranded RNA[J]. Nanoscale Cambridge, 2014,6(17):9965-9969. |
[28] |
Amani A, Zare N, Asadi A, et al. Ultrasound-enhanced gene delivery to alfalfa cells by hPAMAM dendrimer nanoparticles[J]. Turkish Journal of Biology, 2018,42(1):63-75.
doi: 10.3906/biy-1706-6 URL pmid: 30814871 |
[29] |
Lakshmanan M, Kodama Y, Yoshizumi T, et al. Rapid and efficient genedelivery into plant cells using designed peptide carriers[J]. Biomacromolecules, 2012,14(1):10-16.
doi: 10.1021/bm301275g URL pmid: 23215041 |
[30] | Doyle C, Higginbottom K, Swift TA, et al. A simple method for spray-on gene editing in planta[J]. BioRxiv, 2019: 805036. |
[31] |
Harush-Frenkel O, Debotton N, Benita S, et al. Targeting of nanoparticles to the clathrin-mediated endocytic pathway[J]. Biochemical and Biophysical Research Communications, 2007,353(1):26-32.
URL pmid: 17184736 |
[32] |
Namgung R, Singha K, Yu MK, et al. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells[J]. Biomaterials, 2010,31(14):4204-4213.
doi: 10.1016/j.biomaterials.2010.01.123 URL |
[33] |
Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-biointerface[J]. Nature Materials, 2009,8(7):543-557.
doi: 10.1038/nmat2442 URL pmid: 19525947 |
[34] | Bao W, Wang J, Wang Q, et al. Layered double hydroxide nanotransporter for molecule delivery to intact plant cells[J]. Scientific Reports, 2016,6(1):26738. |
[35] | 朱莉. 食品工业中的纳米技术[J]. 食品科技, 2002(11):7-8 |
Zhu L. Nanotechnology in food industry[J]. Food Science and Technology, 2002(11):7-8. | |
[36] | 赵翔. 基于四氧化三铁纳米磁转化系统的花粉介导棉花转基因技术[M]. 北京:中国农业科学院, 2015. |
Zhao X. Pollen mediated transgenic technology of cotton by magnotofection system based on Fe3O4 nanoparticles[M]. Beijing:Chinese Academy of Agricultural Science, 2015. | |
[37] |
Demirer GS, Zhang H, Matos JL, et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants[J]. Nat Nanotechnol, 2019,14(5):456-464.
doi: 10.1038/s41565-019-0382-5 URL pmid: 30804481 |
[38] |
Akinc A, Querbes W, De S, et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms[J]. Molecular Therapy, 2010,18(7):1357-1364.
URL pmid: 20461061 |
[39] |
Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications[J]. Nature Reviews Drug Discovery, 2010,9(8):615-627.
URL pmid: 20616808 |
[40] | Zhang H, Demirer GS, Zhang H, et al. DNA nanostructures coordinate gene silencing in mature plants[J]. Proceedings of the National Academy of Sciences, 2019,116(15):7543-7548. |
[41] |
Cunningham FJ, Goh NS, Demirer GS, et al. Nanoparticle-mediated delivery towards advancing plant genetic engineering[J]. Trends Biotechnol, 2018,36(9):882-897.
URL pmid: 29703583 |
[42] |
Lee H, Lytton-Jean AK, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery[J]. Nature Nanotechnology, 2012,7(6):389-393.
URL pmid: 22659608 |
[43] |
Zhang H, Demirer GS, Zhang H, et al. DNA nanostructures coordinate gene silencing in mature plants[J]. Proceedings of the National Academy of Sciences, 2019,116(15):7543-7548.
doi: 10.1073/pnas.1818290116 URL |
[44] |
Suzuki R, Yamada Y, Harashima H. Development of small, homogeneous pDNA particles condensed with mono-cationic detergents and encapsulated in a multifunctional envelope-type nano device[J]. Biological and Pharmaceutical Bulletin, 2008,31(6):1237-1243.
URL pmid: 18520061 |
[45] |
Lee H, Jeong JH, Park TG. PEG grafted polylysine with fusogenic peptide for gene delivery:high transfection efficiency with low cytotoxicity[J]. Journal of Controlled Release, 2002,79(1-3):283-291.
URL pmid: 11853938 |
[46] |
Liu J, Wang Fh, Wang Ll, et al. Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle[J]. Journal of Central South University of Technology, 2008,15(6):768-773.
doi: 10.1007/s11771-008-0142-4 URL |
[47] |
Singh R, Kostarelos K. Designer adenoviruses for nanomedicine and nanodiagnostics[J]. Trends in Biotechnology, 2009,27(4):220-229.
doi: 10.1016/j.tibtech.2009.01.003 URL pmid: 19251331 |
[48] |
Zhang Y, Yang M, Portney NG, et al. Zeta potential:a surface electrical characteristic to probe the interaction of nanoparticles with normal and cancer human breast epithelial cells[J]. Biomedical Microdevices, 2008,10(2):321-328.
doi: 10.1007/s10544-007-9139-2 URL |
[49] |
Kwak SY, Lew TTS, Sweeney CJ, et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers[J]. Nat Nanotechnol, 2019,14(5):447-455.
doi: 10.1038/s41565-019-0375-4 URL pmid: 30804482 |
[50] |
Ramge P, Unger RE, Oltrogge JB, et al. Polysorbate-80 coating enhances uptake of polybutylcyanoacrylate(PBCA)-nanoparticles by human and bovine primary brain capillary endothelial cells[J]. European Journal of Neuroscience, 2000,12(6):1931-1940.
doi: 10.1046/j.1460-9568.2000.00078.x URL |
[51] |
Wu Y, Gu W, Chen C, et al. Optimization of formulations consisting of layered double hydroxide nanoparticles and small interfering RNA for efficient knockdown of the target gene[J]. ACS Omega, 2018,3(5):4871-4877.
doi: 10.1021/acsomega.8b00397 URL pmid: 30023905 |
[52] | 夏兵, 董琛, 张文一, 等. 杂交鹅掌楸悬浮细胞高效摄取具有良好生物相容性的超微介孔氧化硅纳米颗粒[J]. 中国科学:生命科学, 2013,43(2):177-184. |
Xia B, Dong C, Zhang WY, et al. Highly efficient uptake of ultrafine mesoporous silica nanoparticles with excellent biocompatibility by Liriodendron hybrid suspension cells[J]. Science China Life Science, 2013,56:82-89.
doi: 10.1007/s11427-012-4422-8 URL |
|
[53] | Alberts B, Johnson A, Lewis J, et al. Molecular biology of the cell[M]. 4th ed. Garland Science, New York:. OCLC, 2002. |
[54] | Finiuk N, Buziashvili A, Burlaka O, et al. Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells[J]. Plant Cell, Tissue and Organ Culture(PCT-OC), 2017,131(1):27-39. |
[55] |
Bao W, Wan Y, Baluka F. Nanosheets for Delivery of Biomolecules into Plant Cells[J]. Trends in Plant Science, 2017,22(6):445-447.
URL pmid: 28416163 |
[56] | 王凤华, 刘俊, 童春义, 等. 电击法磁性纳米颗粒作为水稻转基因载体的研究[J]. 分析化学, 2010,38(5):617-621. |
Wang FH, Liu J, Tong CY. et al. Magnetic nanoparticle as rice transgene vector mediated by electroporation[J]. Chinese Journal of Analytical Chemistry, 2010,38(5):617-621. | |
[57] | 刘俊. 基于纳米颗粒的植物转基因及其检测研究[D]. 长沙:湖南大学, 2005. |
Liu J. The study on gene transformation and detection mediated by nanoparticles in plant[D]. Changsha:Hunan University, 2005. | |
[58] |
Demirer G, Zhang H, Goh N, et al. Nanotubes effectively deliver siRNA to intact plant cells and protect siRNA against nuclease degradation[J]. bioRxiv, 2019. DOI: 10.2139/ssrn.3352632.
doi: 10.1101/2021.02.13.431008 URL pmid: 33594371 |
[59] |
Demirer GS, Zhang H, Goh NS, et al. Carbon nanotube-mediated DNA delivery without transgene integration in intact plants[J]. Nature Protocols, 2019,14(10):2954-2971.
doi: 10.1038/s41596-019-0208-9 URL pmid: 31534231 |
[60] |
Doyle C, Higginbottom K, Swift TA, et al. A simple method for spray-on gene editing in planta[J]. bioRxiv, 2019. DOI. org/10.1101/805036.
doi: 10.1101/2021.02.13.431008 URL pmid: 33594371 |
[61] | Mitter N, Worrall EA, Robinson KE, et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses[J]. Nature Plants, 2017,3(2):1-10. |
[62] | 卢艳敏, 崔海信, 崔金辉, 等. 磁性纳米颗粒作为基因转染载体的研究[J]. 生物技术通报, 2012(8):199-204. |
Lu YM, Cui HX, Cui JH, et al. Study on magnetic nanoparticles as carrier for gene transfection[J]. Biotechnology Bulletin, 2012(8):199-204. | |
[63] |
Hao Y, Yang X, Shi Y, et al. Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells[J]. Botany, 2013,91(7):457-466.
doi: 10.1139/cjb-2012-0281 URL |
[64] |
Martin-Ortigosa S, Valenstein JS, Lin VSY, et al. Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method[J]. Advanced Functional Materials, 2012,22(17):3576-3582.
doi: 10.1002/adfm.v22.17 URL |
[65] |
Martin-Ortigosa S, Peterson DJ, Valenstein JS, et al. Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision[J]. Plant Physiology, 2014,164(2):537-547.
URL pmid: 24376280 |
[66] |
Chang FP, Kuang LY, Huang CA, et al. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers[J]. Journal of Materials Chemistry B, 2013,1(39):5279-5293.
doi: 10.1039/c3tb20529k URL pmid: 32263331 |
[67] |
Burlaka OM, Pirko YV, Yemets AI, et al. Plant genetic transformation using carbon nanotubes for DNA delivery[J]. Cytology and Genetics, 2015,49(6):349-357.
doi: 10.3103/S009545271506002X URL |
[68] | Fu YQ, Li LH, Wang PW, et al. Delivering DNA into plant cell by gene carriers of ZnS nanoparticles[J]. Chemical Research Universities, 2012,28(4):672-676. |
[69] | 孔倩倩. 麻疯树高效再生体系的建立及纳米载体转基因技术研究[D]. 长沙:中南林业科技大学, 2010. |
Kong QQ. The research on high-frequency plant regeneration and nano-scale genic carriers in transformation of Jatropha curcas L.[D]. Changsha:Central South University of Forestry and Technology, 2010. | |
[70] |
Wang Q, Chen J, Zhang H, et al. Synjournal of water soluble quantum dots for monitoring carrier-DNA nanoparticles in plant cells[J]. J Nanoscience Nanotechnology, 2011,11(3):2208-2214.
doi: 10.1166/jnn.2011.3560 URL |
[71] | 宋瑜, 李颖, 崔海信, 等. 两种阳离子纳米基因载体及植物基因介导效果的研究[J]. 生物技术通报, 2009(6):78-83. |
Song Y, Li Y, Cui HX, et al. Study on cationic nanoparticles as gene carriers and the efficiency for transferring gene into plant cells[J]. Biotechnology Bulletin, 2009(6):78-83. | |
[72] |
Numata K, Ohtani M, Yoshizumi T, et al. Local gene silencing in plants via synthetic dsRNA and carrier peptide[J]. Plant Biotechnology Journal, 2014,12(8):1027-1034.
doi: 10.1111/pbi.12208 URL pmid: 24905384 |
[73] | Chuah JA, Yoshizumi T, Kodama Y, et al. Gene introduction into the mitochondria of Arabidopsis thaliana via peptide-based carriers[J]. Scientific Report, 2015,5:7751. |
[74] |
Naqvi S, Maitra AN, Abdin MZ, et al. Calcium phosphate nanoparticle mediated genetic transformation in plants[J]. Journal of Materials Chemistry, 2012,22(8):1-9.
doi: 10.1039/c1jm90184b URL |
[75] |
Jiang L, Ding L, He B, et al. Systemic gene silencing in plants triggered by fluorescent nanoparticle-delivered double-stranded RNA[J]. Nanoscale, 2014,6(17):9965-9969.
doi: 10.1039/c4nr03481c URL |
[76] |
Silva AT, Nguyen A, Ye C, et al. Conjugated polymer nanoparticles for effective siRNA delivery to tobacco BY-2 protoplasts[J]. BMC Plant Biology, 2010,10:291.
doi: 10.1186/1471-2229-10-291 URL pmid: 21192827 |
[77] | 王景雪, 孙毅. 农杆菌介导的植物基因转化研究进展[J]. 生物技术通报, 1999(1):7-13. |
Wang XJ, Sun Y. Progress of plants genetic transformation by Agrobacterium[J]. Biotechnology Bull, 1999(1):7-13. | |
[78] | Rafsanjani MS, Alvari A, Samim M, et al. Application of novel nanotechnology strategies in plant biotransformation:a contemporary overview[J]. Recent Patents on Piotechnology, 2012,6(1):69-79. |
[79] |
Klein TM, Wolf ED, Wu R, et al. High-velocity microprojectiles for delivering nucleic acids into living cells[J]. Nature, 1987,327:70-73.
doi: 10.1038/327070a0 URL |
[80] | 张新华, 季娜娜, 闵德栋, 等. VIGS 载体在果树中的应用研究进展[J]. 果树学报, 2017,34(4):507-514. |
Zhang XH, Ji NN, Min DD, et al. Progress of research on application of VIGS in fruit trees[J]. Journal of Fruit Science, 2017,34(4):507-514. | |
[81] | 王安琪, 朱华新, 赵翔. 基于纳米基因载体的动植物遗传转化研究进展[J]. 生物技术进展, 2018,8(4):293-301. |
Wang AQ, Zhu HX, Zhao X. Progress on genetic transformation of animals and plants based on nanogene vector[J]. Current Biotechnology, 2018,8(4):293-301. | |
[82] |
Bortesi L, Fischer R. The CRISPRCas9 system for plant genome editing and beyond[J]. Biotechnology Advances, 2015,33(1):41-52.
doi: 10.1016/j.biotechadv.2014.12.006 URL pmid: 25536441 |
[83] |
Landry MP, Mitter N. How nanocarriers delivering cargos in plants can change the GMO landscape[J]. Nature Nanotechnology, 2019,14(6):512-514.
doi: 10.1038/s41565-019-0463-5 URL pmid: 31168070 |
[84] |
Woo JW, Kim J, Kwon SI, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins[J]. Nature Biotechnology, 2015,33(11):1162-1164.
doi: 10.1038/nbt.3389 URL pmid: 26479191 |
[85] | Svitashev S, Schwartz C, Lenderts B, et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes[J]. Nature Communications, 2016,7(1):1-7. |
[86] | 马海燕, 袁雪, 刘丕庆. 农杆菌介导植物原位转化的研究进展[J]. 分子植物育种, 2019,17(20):7764-7769. |
Ma HY, Yuan X, Liu PQ. Research progress on in planta transformation mediated by Agrobacterium[J]. Molecular Plant Breeding, 2019,17(20):7764-7769. |
[1] | 姚琳通, 刘娅婷, 刘雅静, 陈真真. 介孔二氧化硅在肿瘤治疗领域的研究进展[J]. 生物技术通报, 2019, 35(2): 182-191. |
[2] | 卢艳敏. 纳米基因载体研究进展[J]. 生物技术通报, 2013, 0(2): 61-66. |
[3] | 卢艳敏;崔海信;崔金辉;李瑶;. 磁性纳米颗粒作为基因转染载体的研究[J]. , 2012, 0(08): 199-204. |
[4] | 李君;李岩;刘德虎;. 植物遗传转化的替代方法及研究进展[J]. , 2011, 0(07): 31-36. |
[5] | 李瑞芳;薛雯雯;黄亮;熊前程;王彬;. 枯草芽孢杆菌感受态细胞的制备及质粒转化方法研究[J]. , 2011, 0(05): 227-230. |
[6] | 王振华;杨德光;张辉;胡正;. 大豆遗传转化技术在转基因大豆研究中的应用[J]. , 2010, 0(10): 60-66. |
[7] | 米福贵;. 禾本科牧草基因工程技术及应用[J]. , 2010, 0(07): 156-156. |
[8] | 孔倩倩;李志辉;王琼;卢孟柱;陈介南;. 纳米基因载体在植物遗传转化中的应用[J]. , 2010, 0(06): 6-12. |
[9] | 陈洪栋;董文博;李红民;. 一种用质粒DNA转化大肠杆菌感受态细胞的实用操作技巧[J]. , 2009, 0(S1): 297-299. |
[10] | 宋瑜;李颖;崔海信;李瑶;. 两种阳离子纳米基因载体及植物基因介导效果的研究[J]. , 2009, 0(06): 75-80. |
[11] | 张书民;乔卫红;刘栋良;. 一种新型基因载体——SucPG络合物的研究进展[J]. , 2009, 0(02): 38-42. |
[12] | 张英鸽;. 纳米医药学基本原理[J]. , 2008, 0(S1): 63-70. |
[13] | 伍林;曹淑超;易德莲;秦晓蓉;欧阳兆辉;. 纳米颗粒增强酶生物传感器性能的研究进展[J]. , 2006, 0(01): 30-32. |
[14] | 彭昊. NIH新闻[J]. , 2002, 0(05): 50-50. |
[15] | 邹竹荣;沈桂芳;范云六;. 叶绿体遗传转化[J]. , 1997, 0(03): 16-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||