[1] 刘芷宇, 李良谟, 施卫明. 根际研究法[M]. 南京:江苏科学技术出版社, 1997. Liu ZY, Li LM, Shi WM.Method of rhizosphere research[M]. Nanjing:Jiangsu Science and Technology Press, 1997 [2] 王占义, 潘宁, 罗茜, 等. 一种新型根系分泌物收集装置与收集方法的介绍[J]. 土壤学报, 2010, 47(4):747-752. Wang ZY, Pan N, Luo Q, et al.A new type of device and method for collecting plant root exudates[J]. Acta Pedologica Sinica, 2010, 47(4):747-752. [3] Shen JB, Li CJ, Mi GH et al. Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China[J]. J Exp Bot, 2013, 64(5):1181-1192. [4] Lundberg DS, Lebeis SL, Paredes SH, et al.Defining the core Arab-idopsis thaliana root microbiome[J]. Nature, 2012, 488(7409):86-90. [5] Bai Y, Muller DB, Srinivas G, et al.Functional overlap of the Arabidopsis leaf and root microbiota[J]. Nature, 2015, 528(7582):364-369. [6] Castrillo G, Teixeira PJPL, Paredes SH, et al.Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646):513-538. [7] 李春俭, 马玮, 张福锁. 根际对话及其对植物生长的影响[J]. 植物营养与肥料学报, 2008(1):178-183. Li CJ, Ma W, Zhang FS.Rhizosphere talk and its impacts on plant growth[J]. Journal of Plant Nutrition and Fertilizers, 2008(1):178-183. [8] Lebeis SL, Paredes SH, Lundberg DS, et al.Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa[J]. Science, 2015, 349(6250):860-864. [9] Stringlis IA, et al.MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health[J]. Proc Natl Acad Sci USA, 2018, 115(22):E5213-E5222. [10] Zhang L, Feng G, Declerck S.Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J]. ISME Journal, 2018, 12(10):2339-2351. [11] Korenblum E, Dong YH, Szymanski J, et al.Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling[J]. Proc Natl Acad Sci USA, 2020, 117(7):3874-3883. [12] Zhang RF, Vivanco JM, Shen QR.The unseen rhizosphere root-soil-microbe interactions for crop production[J]. Current Opinion in Microbiology, 2017, 37:8-14. [13] Redmond JW, Batley M, Djordjevic MA, et al.Flavones induce expression of nodulation genes in Rhizobium[J]. Nature, 1986, 323(6089):632-635. [14] Akiyama K, Matsuzaki K, Hayashi H.Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature, 2005, 435(7043):824-827. [15] 孙波, 廖红, 苏彦华, 等. 土壤-根系-微生物系统中影响氮磷利用的一些关键协同机制的研究进展[J]. 土壤, 2015, 47(2):210-219. Sun B, Liao H, Su YH, et al.Advances in key coordinative mechanisms in soil-root-microbe systems to affect nitrogen and phosphorus utilization[J]. Soils, 2015, 47(2):210-219. [16] Venturi V, Keel C.Signaling in the Rhizosphere[J]. Trends Plant Sci, 2016, 21(3):187-198. [17] Chagas FO, Pessotti RD, Caraballo-Rodriguez AM, et al.Chemical signaling involved in plant-microbe interactions[J]. Chemical Society Reviews, 2018, 47(5):1652-1704. [18] Jiang YN, Wang WX, Xie QJ, et al.Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356(6343):1172-1175. [19] Hassan, S, Mathesius U. The role of flavonoids in root-rhizosphere signalling:opportunities and challenges for improving plant-microbe interactions[J]. J Exp Bot, 2012, 63(9):3429-3444. [20] Britto DT and Kronzucker HJ. Ecological significance and complexity of N-source preference in plants[J]. Annals of Botany, 2013, 112(6):957-963. [21] Coskun D, Britto DT, Shi WM, et al.How plant root exudates shape the nitrogen cycle[J]. Trends Plant Sci, 2017, 22(8):661-673. [22] Lerouge P, Roche P, Faucher C, et al.Symbiotic host-specificity of Rhizobium meliloti is determined by a sulfated and acylated glucosamine oligosaccharide signal[J]. Nature, 1990, 344(6268):781-784. [23] Oldroyd GED.Speak, friend, and enter:signalling systems that promote beneficial symbiotic associations in plants[J]. Nature Reviews Microbiology, 2013, 11, 252-263. [24] Mandal SM, Chakraborty D, Dey S.Phenolic acids act as signaling molecules in plant-microbe symbioses[J]. Plant Signaling & Behavior, 2010, 5(4):359-368. [25] Krehenbrink M and Downie JA. Identification of protein secretion systems and novel secreted proteins in Rhizobium leguminosarum bv. viciae[J]. BMC Genomics, 2008, 9:55. [26] Li B, Li YY, Wu HM, et al.Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proc Natl Acad Sci USA, 2016, 113(23):6496-6501. [27] Veliz-Vallejos DF, van Noorden GE, Yuan MQ, et al. A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation[J]. Frontiers in Plant Science, 2014, 5:551. [28] Palmer AG, Mukherjee A, Stacy DM, et al.Interkingdom responses to bacterial quorum sensing signals regulate frequency and rate of nodulation in Legume-Rhizobia symbiosis[J]. Chembiochem, 2016, 17(22):2199-2205. [29] Gosai J, Anandhan S, Bhattacharjee A, et al.Elucidation of quorum sensing components and their role in regulation of symbiotically important traits in Ensifer nodulating pigeon pea[J]. Microb Res, 2020, 231:126354. [30] Gonzalez JE and Marketon MM. Quorum sensing in nitrogen-fixing rhizobia[J]. Microbiology and Molecular Biology Reviews, 2003, 67(4):574-592. [31] Murphy PJ, Wexler W, Grzemski W, et al.Rhizopines-Their role in symbiosis and competition[J]. Soil Biology & Biochemistry, 1995, 27(4-5):525-529. [32] Geddes BA, Paramasivan P, Joffrin A, et al.Engineering transkingdom signalling in plants to control gene expression in rhizosphere bacteria[J]. Nature Communications, 2019, 10:11. [33] Zakir HAKM, Subbarao GV, Pearse SJ, et al.Detection, isolation and characterization of a root-exuded compound, methyl 3-(4-hydroxyphenyl)propionate, responsible for biological nitrification inhibition by Sorghum(Sorghum bicolor)[J]. New Phytol, 2008, 180(2):442-451. [34] Subbarao GV, Nakahara K, Ishikawa T, et al.Biological nitrification inhibition(BNI)activity in sorghum and its characterization[J]. Plant Soil, 2013, 366(1/2):243-259. [35] Subbarao GV, Nakahara K, Hurtado MP, et al.Evidence for biological nitrification inhibition in Brachiaria pastures[J]. Proc Natl Acad Sci USA, 2009, 106(41):17302-17307. [36] Sun L, Lu YF, Yu FW, et al.Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency[J]. New Phytol, 2016, 212(3):646-656. [37] Zhang XN, Lu YF, Yang T, et al.Factors influencing the release of the biological nitrification inhibitor 1, 9-decanediol from rice(Oryza sativa L.)roots[J]. Plant Soil, 2019, 436(1/2):253-265. [38] Nardi P, Akutsu M, Pariasca-Tanaka J, et al.Effect of methyl 3-4-hydroxyphenyl propionate, a Sorghum root exudate, on N dynamic, potential nitrification activity and abundance of ammonia-oxidizing bacteria and archaea[J]. Plant Soil, 2013, 367(1/2):627-637. [39] Lu YF, Zhang XN, Jiang JF, et al.Effects of the biological nitrification inhibitor 1, 9-decanediol on nitrification and ammonia oxidizers in three agricultural soils[J]. Soil Biology and Biochemistry, 2019, 129:48-59. [40] Mellbye BL, Spieck E, Bottomley PJ, et al.Acyl-Homoserine lactone production in nitrifying bacteria of the genera Nitrosospira, Nitrobacter, and Nitrospira identified via a survey of putative quorum-sensing genes[J]. Applied and Environmental Microbiology, 2017, 83(22):e01540-17. [41] Shen QX, Gao J, Liu J, et al.A new acyl-homoserine lactone molecule generated by Nitrobacter winogradskyi[J]. Scientific Reports, 2016, 6:22903. [42] Karwat H, Moreta D, Arango J, et al.Residual effect of BNI by Brachiaria humidicola pasture on nitrogen recovery and grain yield of subsequent maize[J]. Plant Soil, 2017, 420(1/2):389-406. [43] Zhang M, Fan C H, Li QL, et al.A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system[J]. Agriculture Ecosystems & Environment, 2015, 201:43-50. [44] Lu YF, Zhou YR, Nakai S, et al.Stimulation of nitrogen removal in the rhizosphere of aquatic duckweed by root exudate components[J]. Planta, 2014, 239(3):591-603. [45] Sun L, Lu YF, Kronzucker HJ, et al.Quantification and enzyme targets of fatty acid amides from duckweed root exudates involved in the stimulation of denitrification[J]. Journal of Plant Physiology, 2016, 198:81-88. [46] Bardon C, Piola F, Bellvert F, et al.Evidence for biological denitrification inhibition(BDI)by plant secondary metabolites[J]. New Phytol, 2014, 204:620-630. [47] Bardon C, Poly F, Piola F, et al.Mechanism of biological denitrific-ation inhibition:procyanidins induce an allosteric transition of the membrane-bound nitrate reductase through membrane alteration[J]. FEMS Microbiol Ecol, 2016, 92(5):11. [48] Toyofuku M, Nomura N, Fujii T, et al.Quorum sensing regulates denitrification in Pseudomonas aeruginosa PAO1[J]. Journal of Bacteriology, 2007, 189(13):4969-4972. [49] Toyofuku M, Nomura N, Kuno E, et al.Influence of the Pseudomonas quinolone signal on denitrification in Pseudomonas aeruginosa[J]. Journal of Bacteriology, 2008, 190(24):7947-7956. [50] Zhang Y, Gao J, Wang LS, et al.Environmental adaptability and quorum sensing:Iron uptake regulation during biofilm formation by Paracoccus denitrificans[J]. Applied and Environmental Microbiology, 2018, 84(14):15. [51] Gomez-Roldan V, Fermas S, et al.Strigolactone inhibition of shoot branching[J]. Nature, 2008, 455(7210):189-194. [52] Nasir F, Shi SH, Tian L, et al.Strigolactones shape the rhizomicrobiome in rice(Oryza sativa)[J]. Plant Science, 2019, 286:118-133. [53] Wang ET, Schornack S, Marsh JF, et al.A common signaling process that promotes mycorrhizal and Oomycete colonization of plants[J]. Current Biology, 2012, 22(23):2242-2246. [54] Genre A, Chabaud M, et al.Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone[J]. New Phytol, 2013, 198(1):179-189. [55] Maillet F, Poinsot V, Andre O, et al.Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza[J]. Nature, 2011, 469(7328):58-63. [56] 徐丽娇, 姜雪莲, 郝志鹏, 等. 丛枝菌根通过调节碳磷代谢相关基因的表达增强植物对低磷胁迫的适应性[J]. 植物生态学报, 2017, 41(8):815-825. Xu LJ, Jiang XL, Hao ZP, et al.Arbuscular mycorrhiza improves plant adaptation to phosphorus deficiency through regulating the expression of genes relevant to carbon and phosphorus metabolism[J]. Chinese Journal of Plant Ecology, 2017, 41(8):815-825. [57] Zhang L, Feng G, Declerck S.et al.Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium[J]. ISME Journal, 2018, 12(10):2339-2351. [58] Zhang L, Peng Y, Zhou JC, et al.Addition of fructose to the maize hyphosphere increases phosphatase activity by changing bacterial community structure[J]. Soil Biol Biochem, 2020, 142:9. [59] Li L, Li SM, Sun JH, et al.Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proc Natl Acad Sci USA, 2007, 104(27):11192-11196. [60] Chen Y, Bonkowski M, Shen Y, et al.Root ethylene mediates rhizosphere microbial community reconstruction when chemically detecting cyanide produced by neighbouring plants[J]. Microbiome, 2020, 8(1):17. [61] Takagi S, Nomoto K, Takemoto T.Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants[J]. Journal of Plant Nutrition, 1984, 7(1-5):469-477. [62] Shi WM, Chino M, Youssef RA, et al.The occurrence of mugineic acid in the rhizosphere soil of barley plant[J]. Soil Science and Plant Nutrition, 1988, 34(4):585-592. [63] Zhang FS, Treeby M, Romheld V, et al.1991. Mobilization of iron by phytosiderophores as affected by other micronutrients[J]. Plant Soil, 1991, 130(1/2):173-178. [64] Voges M, Bai Y, Schulze-Lefertet P, et al.Plant-derived coumarins shape the composition of an Arabidopsis synthetic root microbiome[J]. Proc Natl Acad Sci USA, 2019, 116(25):12558-12565. [65] Jin CW, He YF, Tang CX, et al.Mechanisms of microbially enhanced Fe acquisition in red clover(Trifolium pratense L.)[J]. Plant Cell and Environment, 2006, 29(5):888-897. [66] Butaite E, Baumgartner M, Wyder S, et al.Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities[J]. Nat Commun, 2017, 8:12. [67] Gu SH, Wei Z, Shao ZY, et al.Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nature Microbiology, 2020. DOI:10. 1038/s41564-020-0719-8. [68] Huang ACC, Jiang T, Liu YX, et al. A specialized metabolic network selectively modulates Arabidopsis root microbiota[J]. Science, 2019, 364(6440):eaau6389. [69] Zhang JY, Liu YX, Zhang N, et al.NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice[J]. Nature Biotechnology, 2019, 37(6):676-684. |