生物技术通报 ›› 2021, Vol. 37 ›› Issue (5): 237-247.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1054
收稿日期:
2020-08-19
出版日期:
2021-05-26
发布日期:
2021-06-11
作者简介:
褚娜,女,硕士研究生,研究方向:微生物电合成;E-mail: 基金资助:
CHU Na(), JIANG Yong(), ZENG Jian-xiong
Received:
2020-08-19
Published:
2021-05-26
Online:
2021-06-11
摘要:
微生物电合成(microbial electrosynthesis,MES)是一种新型微生物电化学技术,以电能驱动微生物在温和条件下转化水和CO2生成有机物。中链脂肪酸(medium-chain fatty acids,MCFAs)是指C6至C12的一元饱和羧酸,是重要的化工原料和农用产品。微生物生产MCFAs通常包括一次发酵和二次发酵过程:一次发酵即微生物将单体和多聚物氧化为中间产物丙酮酸盐,并最终生成短链脂肪酸和醇以及H2和CO2等小分子物质;二次发酵为微生物对一次发酵的产物再利用,包括碳链延长产生中链脂肪酸。MES生产MCFAs可望获得比传统有机废弃物厌氧发酵途径生产MCFAs更高的能量效率,并有望以获得高附加值产物的方式推进MES技术的实用化。综述了MES催化转化C1废气并耦合二次发酵过程进行碳链延长产生MCFAs的研究现状,分析代谢路径及功能微生物,探讨电极材料以及关键运行参数,为MES生产MCFAs的进一步发展提供重要的科学依据和技术支持。
褚娜, 蒋永, 曾建雄. 微生物电合成生产中链脂肪酸的基本原理及研究进展[J]. 生物技术通报, 2021, 37(5): 237-247.
CHU Na, JIANG Yong, ZENG Jian-xiong. Principle and Research Progress in Microbial Electrosynthesis of Medium-chain Fatty Acids[J]. Biotechnology Bulletin, 2021, 37(5): 237-247.
底物 Substrates | 阴极材料 Cathode materials | 功能菌群 Microbial community | 主要产物 Main products | 最大MCFAs选择性Maximum of MCFAs selectivity /(%) a | 最大MCFAs产率 Maximum of MCFAs production rate/ (g·L-1·d-1) | 最大MCFAs产量Maximum of MCFAs concentration/ (g·L-1) | MCFAs延滞期 Lage phase for producing MCFA/d | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
CO2 | 石墨颗粒 Graphite particle | Clostridium spp. | 乙酸、丁酸、异丁酸和己酸 Acetate, butyrate, isobutyrate, and aproate | - | - | 0.3 | - | [ |
CO2 | 石墨颗粒 Graphite particle | Clostridium spp. | 乙酸、丁酸、异丁酸和己酸 Acetate, and butyrate, isobutyrate, aproate | - | 0.04 | 1.2 | 240 | [ |
CO2 | 碳毡 Carbon felt | - | 乙酸、丁酸和己酸Acetate, butyrate, and caproate | 12.8 | 1.50 | 1.5 | 164 | [ |
CO2 | 碳毡 Carbon felt | - | 乙酸、丁酸和己酸Acetate, butyrate, and caproate | 19.7 | 2.00 | 3.1 | 171 | [ |
CO2/CO | 碳毡 Carbon felt | Acetobacterium、Oscillospira、Clostridium spp. | 乙酸、丁酸和己酸Acetate, butyrate, and caproate | 15.4 b | 0.06 | 0.8 | 44 | [ |
CO2/乙醇CO2/ thanol | 碳毡 Carbon felt | Acetobacterium、Clostridium spp. | 丁酸、己酸和庚酸Butyrate, caproate, and heptanoate | 80.3 | 2.41 | 7.7 | <1 | [ |
乙酸 acetate | 石墨毡 Graphite felt | Clostridium kluyveri | 丁酸、己酸和辛酸Butyrate, caproate, and caprylate | 26.0 | 0.19 | 0.8 | - | [ |
乙酸/乙醇 acetate / ethanol | 无极电 Without electrode | Acetoanaerobium、Dysgonomonas、Clostridium spp. | 丁酸、己酸Butyrate, and caproate | 60.0 | 3.40 | 10.0 | 1 | [ |
甘油glycerol | 石墨板 Graphite plate | Citrobacter、Pectinatus、lostridium spp. | 丙酸和戊酸Propionate, and valerate | - | - | - | - | [ |
甘油glycerol | 石墨板 Graphite plate | Citrobacter、Pectinatus、Clostridium spp. | 乙酸、丙酸和丁酸Acetate, ropionate, and butyrate | - | - | - | - | [ |
表1 MES产生MCFAs的相关研究汇总
Table 1 Summary of studies on MES for producing MCFAs
底物 Substrates | 阴极材料 Cathode materials | 功能菌群 Microbial community | 主要产物 Main products | 最大MCFAs选择性Maximum of MCFAs selectivity /(%) a | 最大MCFAs产率 Maximum of MCFAs production rate/ (g·L-1·d-1) | 最大MCFAs产量Maximum of MCFAs concentration/ (g·L-1) | MCFAs延滞期 Lage phase for producing MCFA/d | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
CO2 | 石墨颗粒 Graphite particle | Clostridium spp. | 乙酸、丁酸、异丁酸和己酸 Acetate, butyrate, isobutyrate, and aproate | - | - | 0.3 | - | [ |
CO2 | 石墨颗粒 Graphite particle | Clostridium spp. | 乙酸、丁酸、异丁酸和己酸 Acetate, and butyrate, isobutyrate, aproate | - | 0.04 | 1.2 | 240 | [ |
CO2 | 碳毡 Carbon felt | - | 乙酸、丁酸和己酸Acetate, butyrate, and caproate | 12.8 | 1.50 | 1.5 | 164 | [ |
CO2 | 碳毡 Carbon felt | - | 乙酸、丁酸和己酸Acetate, butyrate, and caproate | 19.7 | 2.00 | 3.1 | 171 | [ |
CO2/CO | 碳毡 Carbon felt | Acetobacterium、Oscillospira、Clostridium spp. | 乙酸、丁酸和己酸Acetate, butyrate, and caproate | 15.4 b | 0.06 | 0.8 | 44 | [ |
CO2/乙醇CO2/ thanol | 碳毡 Carbon felt | Acetobacterium、Clostridium spp. | 丁酸、己酸和庚酸Butyrate, caproate, and heptanoate | 80.3 | 2.41 | 7.7 | <1 | [ |
乙酸 acetate | 石墨毡 Graphite felt | Clostridium kluyveri | 丁酸、己酸和辛酸Butyrate, caproate, and caprylate | 26.0 | 0.19 | 0.8 | - | [ |
乙酸/乙醇 acetate / ethanol | 无极电 Without electrode | Acetoanaerobium、Dysgonomonas、Clostridium spp. | 丁酸、己酸Butyrate, and caproate | 60.0 | 3.40 | 10.0 | 1 | [ |
甘油glycerol | 石墨板 Graphite plate | Citrobacter、Pectinatus、lostridium spp. | 丙酸和戊酸Propionate, and valerate | - | - | - | - | [ |
甘油glycerol | 石墨板 Graphite plate | Citrobacter、Pectinatus、Clostridium spp. | 乙酸、丙酸和丁酸Acetate, ropionate, and butyrate | - | - | - | - | [ |
[1] |
Mac Dowell N, Fennell PS, Shah N, et al. The role of CO2 capture and utilization in mitigating climate change[J]. Nature Climate Change, 2017,7(4):243-249.
doi: 10.1038/nclimate3231 URL |
[2] |
Nevin KP, Hensley SA, Franks AE, et al. Electrosynjournal of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms[J]. Applied and Environmental Microbiology, 2011,77(9):2882-2886.
doi: 10.1128/AEM.02642-10 URL |
[3] |
Cao XX, Huang X, Liang P, et al. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction[J]. Energy Environ Sci, 2009,2(5):498-501.
doi: 10.1039/b901069f URL |
[4] |
Cheng SA, Xing DF, Douglas FC, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009,43(10):3953-3958.
doi: 10.1021/es803531g URL |
[5] | Nevin KP, Woodard TL, Franks AE, et al. Microbial electrosynjournal:feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. MBio, 2010,1(2):e00103-10. |
[6] |
Marshall CW, Ross DE, Fichot EB, et al. Electrosynjournal of commodity chemicals by an autotrophic microbial community[J]. Appl Environ Microbiol, 2012,78(23):8412-8420.
doi: 10.1128/AEM.02401-12 URL |
[7] |
Jiang Y, Su M, Zhang Y, et al. Bioelectrochemical systems for simultaneously production of methane and acetate from carbon dioxide at relatively high rate[J]. International Journal of Hydrogen Energy, 2013,38(8):3497-3502.
doi: 10.1016/j.ijhydene.2012.12.107 URL |
[8] |
Dennis PG, Harnisch F, Yeoh YK, et al. Dynamics of cathode-associated microbial communities and metabolite profiles in a glycerol-fed bioelectrochemical system[J]. Applied and Environmental Microbiology, 2013,79(13):4008-4014.
doi: 10.1128/AEM.00569-13 pmid: 23603684 |
[9] | Calt EA. Products produced from organic waste using managed ecosystem fermentation[J]. J Sustain Dev, 2015,8(3):43-51. |
[10] |
Xu J, Hao J, Guzman JJL, et al. Temperature-phased conversion of acid whey waste into medium-chain carboxylic acids via lactic acid:no external e-donor[J]. Joule, 2018,2(2):280-295.
doi: 10.1016/j.joule.2017.11.008 URL |
[11] | 宋汉娇. 复合型中链脂肪酸对中华绒螯蟹抑菌及品质影响的研究[D]. 上海:上海海洋大学, 2017. |
Song HJ. Effect of components of(C8-C10)medium-chain fatty acid on sterilization and qualitiy of chinese mitten crab(Eriocheir sinensis)[D]. Shanghai:Shanghai Ocean University, 2017. | |
[12] |
Wu J, Wang Z, Duan X, et al. Construction of artificial micro-aerobic metabolism for energy- and carbon-efficient synjournal of medium chain fatty acids in Escherichia coli[J]. Metabolic Engineering, 2019,53:1-13.
doi: 10.1016/j.ymben.2019.01.006 URL |
[13] |
Sarria S, Kruyer NS, Peralta-Yahya P. Microbial synjournal of medium-chain chemicals from renewables[J]. Nature Biotechnology, 2017,35(12):1158-1166.
doi: 10.1038/nbt.4022 URL |
[14] |
Grootscholten TIM, Strik D, Steinbusch KJJ, et al. Two-stage medium chain fatty acid(MCFA)production from municipal solid waste and ethanol[J]. Applied Energy, 2014,116:223-229.
doi: 10.1016/j.apenergy.2013.11.061 URL |
[15] | 苑荣雪, 沈雁文, 朱南文. 以污泥发酵液为底物产中链脂肪酸可行性研究[J]. 环境科学与技术, 2019,42(11):141-146. |
Yuan RX, Shen YW, Zhu NW. Study on biological medium chain fatty acids(MCFAs)production from waste activated sludge fermentation liquid[J]. Environmental Science & Technology, 2019,42(11):141-146. | |
[16] | 王冰. 餐厨垃圾厌氧发酵产中链脂肪酸的研究[D]. 哈尔滨:哈尔滨工业大学, 2019. |
Wang B. Study on medium chain fatty acids production from food waste anaerobic fermentation[D]. Harbin:Harbin Institute of Technology, 2019. | |
[17] |
Wu Q, Guo W, Bao X, et al. Upgrading liquor-making wastewater into medium chain fatty acid:insights into co-electron donors, key microflora, and energy harvest[J]. Water Research, 2018,145:650-659.
doi: 10.1016/j.watres.2018.08.046 URL |
[18] | Vassilev I, Hernandez PA, Batlle-Vilanova P, et al. Microbial electrosynjournal of isobutyric, butyric, caproic Acids, and corresponding alcohols from carbon dioxide[J]. ACS Sustainable Chemistry & Engineering, 2018,6(7):8485-8493. |
[19] |
Chu N, Liang Q, Zhang W, et al. Waste C1 gases as alternatives to pure CO2 improved the microbial electrosynjournal of C4 and C6 carboxylates[J]. ACS Sustain Chem Eng, 2020,8(23):8773-8782.
doi: 10.1021/acssuschemeng.0c02515 URL |
[20] |
Bian B, Bajracharya S, Xu J, et al. Microbial electrosynjournal from CO2:challenges, opportunities and perspectives in the context of circular bioeconomy[J]. Bioresour Technol, 2020,302:122863.
doi: 10.1016/j.biortech.2020.122863 URL |
[21] |
Prévoteau A, Carvajal-Arroyo JM, Ganigué R, et al. Microbial electrosynjournal from CO2:forever a promise?[J]. Current Opinion in Biotechnology, 2020,62:48-57.
doi: S0958-1669(19)30068-0 pmid: 31593911 |
[22] |
May HD, Evans PJ, Labelle EV. The bioelectrosynjournal of acetate[J]. Curr Opin Biotechnol, 2016,42:225-233.
doi: 10.1016/j.copbio.2016.09.004 URL |
[23] |
Wu Q, Bao X, Guo W, et al. Medium chain carboxylic acids production from waste biomass:current advances and perspectives[J]. Biotechnol Adv, 2019,37(5):599-615.
doi: 10.1016/j.biotechadv.2019.03.003 URL |
[24] |
Venkateswar Reddy M, Kumar G, Mohanakrishna G, et al. Review on the production of medium and small chain fatty acids through waste valorization and CO2 fixation[J]. Bioresource Technology, 2020,309:123400.
doi: S0960-8524(20)30672-6 pmid: 32371319 |
[25] | Ganigue R, Sanchez-Paredes P, Baneras L, et al. Low fermentation pH is a trigger to alcohol production, but a killer to chain elongation[J]. Frontiers in Microbiology, 2016,7:702. |
[26] |
Im CH, Kim C, Song YE, et al. Electrochemically enhanced microbial CO conversion to volatile fatty acids using neutral red as an electron mediator[J]. Chemosphere, 2018,191:166-173.
doi: 10.1016/j.chemosphere.2017.10.004 URL |
[27] |
Marshall CW, Ross DE, Handley KM, et al. Metabolic reconstruction and modeling microbial electrosynjournal[J]. Scientific Reports, 2017,7(1):8391.
doi: 10.1038/s41598-017-08877-z URL |
[28] |
Deutzmann JS, Spormann AM. Enhanced microbial electrosynjournal by using defined co-cultures[J]. ISME J, 2017,11:704-714.
doi: 10.1038/ismej.2016.149 pmid: 27801903 |
[29] |
Mock J, Zheng Y, Mueller AP, et al. Energy conservation associated with ethanol formation from H2 and CO2 in Clostridium autoethanogenum involving electron bifurcation[J]. Journal of Bacteriology, 2015,197(18):2965-2980.
doi: 10.1128/JB.00399-15 URL |
[30] |
Simon H, White H, Lebertz H, et al. Reduction of 2-enoates and alkanoates with carbon monoxide or formate, viologens, and Clostridium thermoaceticum to saturated acids and unsaturated and saturated alcohols[J]. Angewandte Chemie International Edition in English, 1987,26(8):785-787.
doi: 10.1002/(ISSN)1521-3773 URL |
[31] |
Scully SM, Brown A, Ross AB, et al. Biotransformation of organic acids to their corresponding alcohols by Thermoanaerobacter pseudoethanolicus[J]. Anaerobe, 2019,57:28-31.
doi: S1075-9964(19)30043-5 pmid: 30876932 |
[32] |
He Q, Lokken PM, Chen S, et al. Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus[J]. Bioresource Technology, 2009,100(23):5955-5965.
doi: 10.1016/j.biortech.2009.06.084 URL |
[33] |
Jeon BS, Kim BC, Um Y, et al. Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp. BS-1[J]. Appl Microbiol Biotechnol, 2010,88(5):1161-1167.
doi: 10.1007/s00253-010-2827-5 URL |
[34] |
Stadtman ER. The coenzyme a transphorase system in Clostridium kluyveri[J]. J Biologi Chem, 1953,203(1):501-512.
doi: 10.1016/S0021-9258(19)52659-X URL |
[35] |
Gildemyn S, Molitor B, Usack JG, et al. Upgrading syngas fermentation effluent using Clostridium kluyveri in a continuous fermentation[J]. Biotechnology for Biofuels, 2017,10:83.
doi: 10.1186/s13068-017-0764-6 URL |
[36] |
Kim BC, Seung Jeon B, Kim S, et al. Caproiciproducens galactitolivorans gen. nov., sp. nov., a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant[J]. International Journal of Systematic and Evolutionary Microbiology, 2015,65(12):4902-4908.
doi: 10.1099/ijsem.0.000665 URL |
[37] |
Agler MT, Spirito CM, Usack JG, et al. Chain elongation with reactor microbiomes:upgrading dilute ethanol to medium-chain carboxylates[J]. Energy Environ Sci, 2012,5(8):8189-8192.
doi: 10.1039/c2ee22101b URL |
[38] |
Zhu X, Tao Y, Liang C, et al. The synjournal of n-caproate from lactate:a new efficient process for medium-chain carboxylates production[J]. Scientific Reports, 2015,5:14360.
doi: 10.1038/srep14360 URL |
[39] |
Vassilev I, Kracke F, Freguia S, et al. Microbial electrosynjournal system with dual biocathode arrangement for simultaneous acetogenesis, solventogenesis and carbon chain elongation[J]. Chemical Communications, 2019,55(30):4351-4354.
doi: 10.1039/c9cc00208a |
[40] | Van Eerten-Jansen MCAA, Ter Heijne A, Grootscholten TIM, et al. Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures[J]. ACS Sustainable Chemistry & Engineering, 2013,1(5):513-518. |
[41] | 苏红, 韩业君. 亲电微生物及其催化的CO2固定和合成[J]. 化学进展, 2019,31(Z1):433-441. |
Su H, Han YJ. Electroautotrophic microorganisms:uptaking extracellular electron and catalyzing CO2 fixation and synjournal[J]. Progress in Chemistry, 2019,31(Z1):433-441. | |
[42] | 丁建军, 彭小伟, 韩业君. 厌氧活性污泥产电特性及产电过程微生物群落变化[J]. 过程工程学报, 2019,19(1):209-215. |
Ding JJ, Peng XW, Han YJ. Electricity production and microbial community change of anaerobic sludge[J]. The Chinese Journal of Process Engineering, 2019,19(1):209-215. | |
[43] | Jourdin L, Raes SMT, Buisman CJN, et al. Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density[J]. Front Energy Res, 2018, 6:UNSP 7. |
[44] |
Jourdin L, Winkelhorst M, Rawls B, et al. Enhanced selectivity to butyrate and caproate above acetate in continuous bioelectrochemical chain elongation from CO2:steering with CO2 loading rate and hydraulic retention time[J]. Bioresource Technology Reports, 2019,7:100284.
doi: 10.1016/j.biteb.2019.100284 URL |
[45] |
Jiang Y, Chu N, Qian DK, et al. Microbial electrochemical stimulation of caproate production from ethanol and carbon dioxide[J]. Bioresource Technology, 2020,295:122266.
doi: S0960-8524(19)31496-8 pmid: 31669871 |
[46] |
Jiang Y, Chu N, Zhang W, et al. Electro-fermentation regulates mixed culture chain elongation with fresh and acclimated cathode[J]. Energ Conversi Manage, 2020,204:112285.
doi: 10.1016/j.enconman.2019.112285 URL |
[47] |
Zhou M, Chen J, Freguia S, et al. Carbon and electron fluxes during the electricity driven 1, 3-propanediol biosynjournal from glycerol[J]. Environ Sci Technol, 2013,47(19):11199-11205.
doi: 10.1021/es402132r URL |
[48] |
Pant D, Patil SA, Ammam F, et al. An overview of cathode materials for microbial electrosynjournal of chemicals from carbon dioxide[J]. Green Chemistry, 2017,19(24):5748-5760.
doi: 10.1039/C7GC01801K URL |
[49] |
Katuri KP, Kalathil S, Ragab A, et al. Dual-function electrocatalytic and macroporous hollow-fiber cathode for converting waste streams to valuable resources using microbial electrochemical systems[J]. Advanced Materials, 2018,30(26):1707072.
doi: 10.1002/adma.v30.26 URL |
[50] |
Annie Modestra J, Venkata Mohan S. Capacitive biocathodes driving electrotrophy towards enhanced CO2 reduction for microbial electrosynjournal of fatty acids[J]. Bioresource Technology, 2019,294:122181.
doi: S0960-8524(19)31411-7 pmid: 31610485 |
[51] |
Roy S, Schievano A, Pant D. Electro-stimulated microbial factory for value added product synjournal[J]. Bioresource Technology, 2016,213:129-139.
doi: 10.1016/j.biortech.2016.03.052 URL |
[52] | Steinbusch KJJ, Hamelers HVM, Plugge CM, et al. Biological formation of caproate and caprylate from acetate:fuel and chemical production from low grade biomass[J]. Energy & Environmental Science, 2011,4(1):216-224. |
[53] |
Liu C, Luo G, Liu H, et al. CO as electron donor for efficient medium chain carboxylate production by chain elongation:microbial and thermodynamic insights[J]. Chemical Engineering Journal, 2020,390:124577.
doi: 10.1016/j.cej.2020.124577 URL |
[54] |
Spirito CM, Marzilli AM, Angenent LT. Higher substrate ratios of ethanol to acetate steered chain elongation toward n-caprylate in a bioreactor with product extraction[J]. Environmental Science & Technology, 2018,52(22):13438-13447.
doi: 10.1021/acs.est.8b03856 URL |
[55] |
Kucek LA, Spirito CM, Angenent LT. High n-caprylate productivities and specificities from dilute ethanol and acetate:chain elongation with microbiomes to upgrade products from syngas fermentation[J]. Energy Environ Sci, 2016,9(11):3482-3494.
doi: 10.1039/C6EE01487A URL |
[56] |
Moscoviz R, Toledo-Alarcón J, Trably E, et al. Electro-fermentation:how to drive fermentation using electrochemical systems[J]. Trends in Biotechnology, 2016,34(11):856-865.
doi: S0167-7799(16)30028-2 pmid: 27178018 |
[57] |
Rojas MDA, Mateos R, Sotres A, et al. Microbial electrosynjournal(MES)from CO2 is resilient to fluctuations in renewable energy supply[J]. Energy Convers Manage, 2018,177:272-279.
doi: 10.1016/j.enconman.2018.09.064 URL |
[58] |
Roghair M, Hoogstad T, Strik DPBTB, et al. Controlling ethanol use in chain elongation by CO2 loading rate[J]. Environmental Science & Technology, 2018,52(3):1496-1505.
doi: 10.1021/acs.est.7b04904 URL |
[59] |
Cavalcante WDA, Leitão RC, Gehring TA, et al. Anaerobic fermentation for n-caproic acid production:a review[J]. Process Biochemistry, 2017,54:106-119.
doi: 10.1016/j.procbio.2016.12.024 URL |
[60] |
Sofia EE, Joseph MI, Cesar IT, Rosa KB, et al. Impact of carbon monoxide partial pressures on methanogenesis and medium chain fatty acids production during ethanol fermentation[J]. Biotechnology and Bioengineering, 2018,115(2):341-350.
doi: 10.1002/bit.26471 URL |
[61] |
Esquivel-Elizondo S, Delgado AG, Rittmann BE, et al. The effects of CO2 and H2 on CO metabolism by pure and mixed microbial cultures[J]. Biotechnology for Biofuels, 2017,10:220.
doi: 10.1186/s13068-017-0910-1 URL |
[62] |
Ganigue R, Ramio-Pujol S, Sanchez P, et al. Conversion of sewage sludge to commodity chemicals via syngas fermentation[J]. Water Science and Technology, 2015,72(3):415-420.
doi: 10.2166/wst.2015.222 URL |
[63] |
Liu C, Luo G, Wang W, et al. The effects of pH and temperature on the acetate production and microbial community compositions by syngas fermentation[J]. Fuel, 2018,224:537-544.
doi: 10.1016/j.fuel.2018.03.125 URL |
[64] | 吴清莲. 乙醇和乳酸引导的碳链增长技术生产中链羧酸的研究[D]. 哈尔滨:哈尔滨工业大学, 2019. |
Wu QL. Study on medium chain carboxylic acid production from chain elongation technology induced by ethanol and lactate[D]. Harbin:Harbin Institute of Technology, 2019. | |
[65] |
Ge S, Usack JG, Spirito CM, et al. Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction[J]. Environmental Science & Technology, 2015,49(13):8012-8021.
doi: 10.1021/acs.est.5b00238 URL |
[66] |
Grootscholten TI, Steinbusch KJ, Hamelers HV, et al. Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production[J]. Bioresource Technology, 2013,135:440-445.
doi: 10.1016/j.biortech.2012.10.165 pmid: 23228455 |
[67] |
Shen R, Jiang Y, Ge Z, et al. Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation[J]. Applied Energy, 2018,212:509-515.
doi: 10.1016/j.apenergy.2017.12.065 URL |
[68] |
Molitor B, Richter H, Martin ME, et al. Carbon recovery by fermentation of CO-rich off gases-Turning steel mills into biorefineries[J]. Bioresource Technology, 2016,215:386-396.
doi: 10.1016/j.biortech.2016.03.094 URL |
[69] |
Munasinghe PC, Khanal SK. Biomass-derived syngas fermentation into biofuels:opportunities and challenges[J]. Bioresource Technology, 2010,101(13):5013-5022.
doi: 10.1016/j.biortech.2009.12.098 pmid: 20096574 |
[70] | Anderson ME. Identification and characterization of the CO Oxidation/CO2 reduction site of Ni-containing carbon monoxide dehydrogenases[D]. Texas:Texas A&M University, 1995. |
[71] |
De Leeuw KD, Buisman CJN, Strik D. Branched medium chain fatty acids:iso-caproate formation from iso-butyrate broadens the product spectrum for microbial chain elongation[J]. Environ Sci Technol, 2019,53(13):7704-7713.
doi: 10.1021/acs.est.8b07256 URL |
[72] |
Andersen SJ, Candry P, Basadre T, et al. Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation[J]. Biotechnology for Biofuels, 2015,8:221.
doi: 10.1186/s13068-015-0396-7 URL |
[73] |
Xu J, Guzman JJ, Andersen SJ, et al. In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis[J]. Chem Comm, 2015,51(31):6847-6850.
doi: 10.1039/C5CC01897H URL |
[74] | 刘向, 张君奇, 张保财, 等. 强化产电微生物与电极间电子传递速率的研究进展[J]. 生物工程学报, 2021,37(4):1-17. |
Liu X, Zhang JQ, Zhang BC, et al. Progress in enhancing electron transfer rate between exoelectrogenic microorganisms and electrode interface[J]. Chinese Journal of Biotechnology, 2021,37(4):1-17. | |
[75] |
Sakimoto KK, Wong AB, Yang P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production[J]. Science, 2016,351(6268):74-77.
doi: 10.1126/science.aad3317 URL |
[76] |
Emerson DF, Woolston BM, Liu N, et al. Enhancing H2-dependent growth of and CO2 fixation by Clostridium ljungdahlii through nitrate supplementation[J]. Biotechnology and Bioengineering, 2019,116(2):294-306.
doi: 10.1002/bit.26847 pmid: 30267586 |
[1] | 孙雷心. Calgene的植物油基因获得美国专利[J]. , 1995, 0(05): 14-15. |
[2] | 李思经. Calgene开发中链脂肪酸新来源[J]. , 1995, 0(04): 31-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||