生物技术通报 ›› 2021, Vol. 37 ›› Issue (6): 259-271.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1255
收稿日期:
2020-10-13
出版日期:
2021-06-26
发布日期:
2021-07-08
作者简介:
苗华彪,男,博士,研究方向:生物化学与分子生物学;E-mail: 基金资助:
MIAO Hua-biao1,2(), CAO Yan1, YANG Meng-han1, HUANG Zun-xi1,2()
Received:
2020-10-13
Published:
2021-06-26
Online:
2021-07-08
摘要:
枯草芽孢杆菌(Bacillus subtilis)作为一种重要的原核表达宿主菌,具有蛋白分泌能力强、遗传背景清晰、无密码子偏好性、生长迅速和非致病性等优点,一直都是外源蛋白表达优选的模式菌株。信号肽(signal peptide)是一段存在于前体蛋白N-端的短肽链,其功能在于引导和调节前体蛋白的折叠,在蛋白转移和分泌过程中扮演着极其重要的角色。目前,利用枯草芽孢杆菌信号肽,针对不同外源蛋白的高效分泌暂无规律性可寻。为此,从枯草芽孢杆菌信号肽的结构特点、分类、转运途径和应用方式等方面进行综述,以期为进一步筛选外源蛋白在枯草芽孢杆菌表达系统中的最适信号肽提供一定的参考。
苗华彪, 曹艳, 杨梦瀚, 黄遵锡. 基于信号肽策略提高外源蛋白在枯草芽孢杆菌中的表达[J]. 生物技术通报, 2021, 37(6): 259-271.
MIAO Hua-biao, CAO Yan, YANG Meng-han, HUANG Zun-xi. The Strategy for Enhancing Foreign Proteins Expression by Signal Peptide in Bacillus subtilis[J]. Biotechnology Bulletin, 2021, 37(6): 259-271.
图1 枯草芽孢杆菌Sec和Tat分泌途径信号肽的主要特征和机制示意图(依据参考文献[2,5,21,27,29-31]绘制) 图中A和C分别代表Sec和Tat型信号肽的主要特征,箭头代表信号肽酶裂解位点;灰色:N-端结构;青色:H-端结构;蓝色:C-端结构;白色:表示成熟蛋白。B和D分别代表Sec和Tat蛋白分泌途径的示意图。黑色箭头:Sec 分泌途径;红色箭头:Tat 分泌途径;红色矩形:信号肽;黑线:前体蛋白;参与分泌过程的蛋白质用不规则图形或不同颜色的圆柱体表示
Fig.1 Schematic diagram of the main characteristics and mechanism of the signal peptides about the secretory pathways of Bacillus subtilis Sec and Tat(Based on the references[2,5,21,27,29-31]) A and C represent the main characteristics of Sec and Tat type signal peptides respectively,arrows represent signal peptidase cleavage sites. gray:N-terminal structure; cyan:H-terminal structure; blue:C-terminal structure; white:indicates mature protein. B and D represent schematic diagrams of Sec and Tat protein secretion pathways respectively. Black arrows:Sec secretion pathways; red arrows:Tat secretion pathways; red rectangles:signal peptides; black lines:precursor proteins; and proteins involved in the secretion process are represented by irregular graphics or cylinders of different colors
外源蛋白 Foreign protein | 信号肽类型 Signal peptide type | 最适信号肽 Optimal signal peptide | 分泌途径 Secretory pathway | 胞外活性 Extracellular activity | 参考文献 Reference |
---|---|---|---|---|---|
酰胺酶 Amidase | 20个Sec+1个Tat | Pac | Sec | +1.36倍 | [40] |
氨肽酶 Aminopeptidase | 19个Sec | YncM | Sec | +1.20倍 | [41] |
碱性丝氨酸蛋白酶 Alkaline serine protease | 73个Sec | DacB | Sec | 953.00 U/mg | [42] |
角蛋白酶 Keratinase | 5个Sec+4个Tat | LipA | Tat | +2.00倍 | [43] |
L-天冬酰胺酶 L-asparaginase | 5个Sec+3个Tat | WapA | Tat | +1.72倍 | [44] |
β-甘露聚糖酶 β-mannanase | 3个Sec+3个Tat | LipA | Tat | +1.25倍 | [45] |
碱性果胶酶 Alkaline polygalacturonate lyase | 11个Sec+3个Tat | Bpr | Sec | 313.70 U/g | [46] |
果聚糖蔗糖酶 Encoding levansucrase | 7个Sec+1个Tat | YncM | Sec | +2.61倍 | [47] |
普鲁兰酶 Pullulanase | 4个Sec | SacB | Sec | 2.82 U/mL | [48] |
聚对苯二甲酸乙二醇酯水解酶 PETase | 3个Sec+3个Tat | SPPETase | Tat | +3.80倍 | [49] |
脂肪酶 Lipase | 6个Sec+2个Tat | PhoD | Tat | +2.33倍 | [50] |
β-半乳糖苷酶 β-galactosidase | 3个Sec+2个Tat | PhoD | Tat | +10.10倍 | [51] |
α-淀粉酶 α-Amylase | 5个Sec+1个Tat | NprE | Sec | 260.00 U/mL | [52] |
碱性淀粉酶 Alkaline amylase | 9个Sec+4个Tat | YwbN | Tat | 364.5 U/mL | [53] |
α-淀粉酶 α-Amylase | 44个Sec+2个Tat | BglS | Sec | 1393.30 U/mL | [54] |
α-淀粉酶 α-Amylase | 8个Sec+1个Tat | YfkN | Sec | +10.00倍 | [55] |
α-淀粉酶 α-Amylase | 6个Sec+2个Tat | NprE | Sec | 242.00 U/mL | [56] |
表1 基于对信号肽的直接替换提高外源蛋白表达的研究
Table 1 Research on improving the expression of foreign proteins based on direct replacement of signal peptides
外源蛋白 Foreign protein | 信号肽类型 Signal peptide type | 最适信号肽 Optimal signal peptide | 分泌途径 Secretory pathway | 胞外活性 Extracellular activity | 参考文献 Reference |
---|---|---|---|---|---|
酰胺酶 Amidase | 20个Sec+1个Tat | Pac | Sec | +1.36倍 | [40] |
氨肽酶 Aminopeptidase | 19个Sec | YncM | Sec | +1.20倍 | [41] |
碱性丝氨酸蛋白酶 Alkaline serine protease | 73个Sec | DacB | Sec | 953.00 U/mg | [42] |
角蛋白酶 Keratinase | 5个Sec+4个Tat | LipA | Tat | +2.00倍 | [43] |
L-天冬酰胺酶 L-asparaginase | 5个Sec+3个Tat | WapA | Tat | +1.72倍 | [44] |
β-甘露聚糖酶 β-mannanase | 3个Sec+3个Tat | LipA | Tat | +1.25倍 | [45] |
碱性果胶酶 Alkaline polygalacturonate lyase | 11个Sec+3个Tat | Bpr | Sec | 313.70 U/g | [46] |
果聚糖蔗糖酶 Encoding levansucrase | 7个Sec+1个Tat | YncM | Sec | +2.61倍 | [47] |
普鲁兰酶 Pullulanase | 4个Sec | SacB | Sec | 2.82 U/mL | [48] |
聚对苯二甲酸乙二醇酯水解酶 PETase | 3个Sec+3个Tat | SPPETase | Tat | +3.80倍 | [49] |
脂肪酶 Lipase | 6个Sec+2个Tat | PhoD | Tat | +2.33倍 | [50] |
β-半乳糖苷酶 β-galactosidase | 3个Sec+2个Tat | PhoD | Tat | +10.10倍 | [51] |
α-淀粉酶 α-Amylase | 5个Sec+1个Tat | NprE | Sec | 260.00 U/mL | [52] |
碱性淀粉酶 Alkaline amylase | 9个Sec+4个Tat | YwbN | Tat | 364.5 U/mL | [53] |
α-淀粉酶 α-Amylase | 44个Sec+2个Tat | BglS | Sec | 1393.30 U/mL | [54] |
α-淀粉酶 α-Amylase | 8个Sec+1个Tat | YfkN | Sec | +10.00倍 | [55] |
α-淀粉酶 α-Amylase | 6个Sec+2个Tat | NprE | Sec | 242.00 U/mL | [56] |
外源蛋白 Foreign protein | 信号肽 Signal peptide | 分泌途径 Secretory pathway | 信号肽突变点 Signal peptide mutation site | 胞外活性 Extracellular activity | 参考文献 Reference |
---|---|---|---|---|---|
脂肪酶 Lipase | PhoD | Tat | N3K、N3K/L4K、D25R、D25R/F29R | +1.12-1.31倍 | [50] |
碱性淀粉酶 Alkaline amylase | YwbN | Tat | E4K/E9K、I16N/ L17S/W19S | +1.08-1.58倍 | [53] |
α-淀粉酶 α-Amylase | YfkN | Sec | I3G/Q4R | +13.00倍 | [55] |
地衣聚糖酶 Lichenase | H1 | - | VNIAFMLF/RKIAGMAT | +4.60倍 | [57] |
角质酶 Cutinase | AmyE | Sec | F2D、F2E、F6W、K4L | +2-3倍 | [58] |
β-半乳糖苷酶 β-galactosidase | AmyX | Tat | N4I/ Y8F/N17I | +2.50倍 | [59] |
表2 基于对信号肽的突变提高外源蛋白表达的研究
Table 2 Research on improving the expression of foreign protein based on mutation of signal peptide
外源蛋白 Foreign protein | 信号肽 Signal peptide | 分泌途径 Secretory pathway | 信号肽突变点 Signal peptide mutation site | 胞外活性 Extracellular activity | 参考文献 Reference |
---|---|---|---|---|---|
脂肪酶 Lipase | PhoD | Tat | N3K、N3K/L4K、D25R、D25R/F29R | +1.12-1.31倍 | [50] |
碱性淀粉酶 Alkaline amylase | YwbN | Tat | E4K/E9K、I16N/ L17S/W19S | +1.08-1.58倍 | [53] |
α-淀粉酶 α-Amylase | YfkN | Sec | I3G/Q4R | +13.00倍 | [55] |
地衣聚糖酶 Lichenase | H1 | - | VNIAFMLF/RKIAGMAT | +4.60倍 | [57] |
角质酶 Cutinase | AmyE | Sec | F2D、F2E、F6W、K4L | +2-3倍 | [58] |
β-半乳糖苷酶 β-galactosidase | AmyX | Tat | N4I/ Y8F/N17I | +2.50倍 | [59] |
外源蛋白 Foreign protein | 信号肽类型 Signal peptide type | 分泌途径 Secretory pathway | 最适信号肽 Optimal signal peptide | 胞外活性 Extracellular activity | 参考文献Reference |
---|---|---|---|---|---|
角质酶 Cutinase | 173个Sec | Sec | Epr | 4.67 U/mL | [12] |
细胞质酯酶 Cytoplasmatic esterase | 173个Sec | Sec | YwmC | 1.50 U/mL | [12] |
α-麦芽淀粉酶 Maltogenic α-amylase | 173个Sec | Sec | YvcE | 250.70 U/mL | [60] |
蛋白酶 Protease | 173个Sec | Sec | YbdN | +7.00倍 | [61] |
纳豆植酸酶 Natto phytase | 173个Sec | Sec | Pbp | +2.00倍 | [62] |
α-淀粉酶 α-Amylase | 173个Sec | Sec | YomL | 113.25 U/mL | [63] |
α-淀粉酶 α-Amylase | 173个Sec | Sec | YojL | +3.5倍 | [64] |
α-淀粉酶 α-Amylase | 173个Sec | Sec | PeI | +1.68倍 | [65] |
木聚糖酶 Xylanase | 114个Sec+24个Tat | Sec | PhoB | 327.20 U/mL | [66] |
表3 基于构建信号肽文库提高外源蛋白表达的研究
Table 3 Research on improving foreign protein expression based on constructing signal peptide library
外源蛋白 Foreign protein | 信号肽类型 Signal peptide type | 分泌途径 Secretory pathway | 最适信号肽 Optimal signal peptide | 胞外活性 Extracellular activity | 参考文献Reference |
---|---|---|---|---|---|
角质酶 Cutinase | 173个Sec | Sec | Epr | 4.67 U/mL | [12] |
细胞质酯酶 Cytoplasmatic esterase | 173个Sec | Sec | YwmC | 1.50 U/mL | [12] |
α-麦芽淀粉酶 Maltogenic α-amylase | 173个Sec | Sec | YvcE | 250.70 U/mL | [60] |
蛋白酶 Protease | 173个Sec | Sec | YbdN | +7.00倍 | [61] |
纳豆植酸酶 Natto phytase | 173个Sec | Sec | Pbp | +2.00倍 | [62] |
α-淀粉酶 α-Amylase | 173个Sec | Sec | YomL | 113.25 U/mL | [63] |
α-淀粉酶 α-Amylase | 173个Sec | Sec | YojL | +3.5倍 | [64] |
α-淀粉酶 α-Amylase | 173个Sec | Sec | PeI | +1.68倍 | [65] |
木聚糖酶 Xylanase | 114个Sec+24个Tat | Sec | PhoB | 327.20 U/mL | [66] |
[1] |
Lee NK, Kim WS, Paik HD. Bacillus strains as human probiotics:characterization, safety, microbiome, and probiotic carrier[J]. Food Science and Biotechnology, 2019, 28(5):1297-1305.
doi: 10.1007/s10068-019-00691-9 URL |
[2] |
Cui WJ, Han LH, Suo FY, et al. Exploitation of Bacillus subtilis as a robust workhorse for production of heterologous proteins and beyond[J]. World Journal of Microbiology & Biotechnology, 2018, 34(10):145-164.
doi: 10.1007/s11274-018-2531-7 URL |
[3] |
Gu Y, Xu XH, Wu YK, et al. Advances and prospects of Bacillus subtilis cellular factories:from rational design to industrial applications[J]. Metabolic Engineering, 2018, 50:109-121.
doi: 10.1016/j.ymben.2018.05.006 URL |
[4] |
Tjalsma H, Antelmann H, Jongbloed JD, et al. Proteomics of protein secretion by Bacillus subtilis:separating the “secrets” of the secretome[J]. Microbiology and Molecular Biology Reviews, 2004, 68(2):207-233.
pmid: 15187182 |
[5] | Song Y, Nikoloff JM, Zhang D. Improving protein production on the level of regulation of both expression and secretion pathways in Bacillus subtilis[J]. World Journal of Microbiology & Biotechnology, 2015, 25(7):963-977. |
[6] | 熊海涛, 韦宇拓. 枯草芽孢杆菌表达系统及其启动子的研究进展[J]. 广西科学, 2018, 25(3):233-241. |
Xiong HT, Wei YT. Research progress of Bacillus subtilis expression on system and its promoter regulatory elements[J]. Guangxi Sciences, 2018, 25(3):233-241. | |
[7] |
Blobel G. Transfer of proteins across membranes I. presence of proteolytically processed and unprocessed nascent immunoglobulin light chains on membrane-bound ribosomes of murine myeloma[J]. J Cell Biol, 1975, 67(3):835-851.
pmid: 811671 |
[8] |
Walter P, Blobel G. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum[J]. Proceedings of the National Academy of Sciences, 1980, 77(12):7112-7116.
doi: 10.1073/pnas.77.12.7112 URL |
[9] |
Gilmore R, Walter P, Blobel G. Protein translocation across the endoplasmic reticulum II. isolation and characterization of the signal recognition particle receptor[J]. The Journal of Cell Biology, 1982, 95(2):470-477.
doi: 10.1083/jcb.95.2.470 URL |
[10] |
Tjalsma H, Noback MA, Bron S, et al. Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities:constitutive and temporally controlled expression of different sip genes[J]. Journal of Biological Chemistry, 1997, 272(41):25983-25992.
doi: 10.1074/jbc.272.41.25983 URL |
[11] |
Tjalsma H, Bolhuis A, Jongbloed JDH, et al. Signal peptide-dependent protein transport in Bacillus subtilis:a genome-based survey of the secretome[J]. Microbiology and Molecular Biology Reviews, 2000, 64(3):515-547.
pmid: 10974125 |
[12] |
Brockmeier U, Caspers M, Freudl R, et al. Systematic screening of all signal peptides from Bacillus subtilis:a powerful strategy in optimizing heterologous protein secretion in Gram-positive bacteria[J]. J Mol Biol, 2006, 362(3):393-402.
pmid: 16930615 |
[13] | Tjalsma H, Zanen G, Venema G, et al. The potential active site of the lipoprotein-specific(type II)signal peptidase of Bacillus subtilis[J]. Journal of Biological Chemistry, 1999, 242(40):28191-28197. |
[14] |
Georg K, Klemens W, Irmgard S. Structure of the complete bacterial SRP Alu domain[J]. Nucleic Acids Research, 2014, 42(19):12284-12294.
doi: 10.1093/nar/gku883 URL |
[15] | Struck JCR, Hartmann RK, Toschka HY, et al. Transcription and processing of Bacillus subtilis small cytoplasmic RNA[J]. Molecular & General Genetics, 1989, 215(3):478-482. |
[16] |
Carabetta VJ, Greco TM, Cristea IM, et al. YfmK is an N ε-lysine acetyltransferase that directly acetylates the histone-like protein HBsu in Bacillus subtilis[J]. Proceedings of the National Academy of Sciences, 2019, 116(9):1-6.
doi: 10.1073/iti0119116 URL |
[17] | Tomas F, Daniel W, Peter O, et al. Dynamic action of the Sec machinery during initiation, protein translocation and termination[J]. eLife, 2018, 7:35112-3538. |
[18] | Adachi S, Murakawa Y, Hiraga S. Dynamic nature of SecA and its associated proteins in Escherichia coli[J]. Frontiers in Microbiology, 2015, 75(6):75-87. |
[19] | Voros A, Simm R, Slamti L, et al. SecDF as part of the Sec-translocase facilitates efficient secretion of Bacillus cereus toxins and cell wall-associated proteins[J]. PLoS One, 2014, 8(9):e103326. |
[20] |
Chiba S, Ito K. MifM monitors total YidC activities of Bacillus subtilis, including that of YidC2, the target of regulation[J]. Journal of Bacteriology, 2015, 197(1):99-107.
doi: 10.1128/JB.02074-14 URL |
[21] |
Kudva R, Denks K, Kuhn P, et al. Protein translocation across the inner membrane of Gram-negative bacteria:the Sec and Tat dependent protein transport pathways[J]. Research in Microbiology, 2013, 164(6):505-534.
doi: 10.1016/j.resmic.2013.03.016 URL |
[22] |
Wang H, Ma Y, Hsieh YH, et al. SecAAA trimer is fully functional as SecAA dimer in the membrane:existence of higher oligomers?[J]. Biochemical and Biophysical Research Communications, 2014, 447(2):250-254.
doi: 10.1016/j.bbrc.2014.03.116 URL |
[23] |
Ma RJ, Wang YH, Liu L, et al. Production enhancement of the extracellular lipase LipA in Bacillus subtilis:effects of expression system and Sec pathway components[J]. Protein Expression and Purification, 2018, 142:81-87.
doi: 10.1016/j.pep.2017.09.011 URL |
[24] |
Shapova YA, Paetzel M. Crystallographic analysis of Bacillus subtilis CsaA[J]. Acta Crystallographica Section D, Biological Crystallography, 2007, 63(4):478-485.
doi: 10.1107/S0907444907005045 URL |
[25] |
Terra R, Stanley-Wall NR, Cao G, et al. Identification of Bacillus subtilis SipW as a bifunctional signal peptidase that controls surface-adhered biofilm formation[J]. Journal of Bacteriology, 2012, 194(11):2781-2790.
doi: 10.1128/JB.06780-11 URL |
[26] |
Motojima F, Fujii K, Yoshida M. Chaperonin facilitates protein folding by avoiding initial polypeptide collapse[J]. Journal of Biochemistry, 2018, 164(5):369-379.
doi: 10.1093/jb/mvy061 URL |
[27] |
Kang Z, Yang S, Du G, et al. Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species[J]. J Ind Microbiol Biotechnol, 2014, 41(11):1599-1607.
doi: 10.1007/s10295-014-1506-4 URL |
[28] |
Seydlová G, Halada P, Fiser R, et al. DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress[J]. J Appl Microbiol, 2012, 112(4):765-742.
doi: 10.1111/j.1365-2672.2012.05238.x pmid: 22268681 |
[29] | Anne J, Economou A, Bernaerts K. Protein secretion in Gram-positive acteria:from multiple pathways to biotechnology[J]. Curr Top Microbiol Immunol, 2017, 404:267-308. |
[30] | Frain KM, Dijl JMV, Robinson C. The Twin-Arginine Pathway for Protein Secretion[M]// Protein Secretion in Bacteria. John Wiley & Sons, Ltd, 2019. |
[31] |
Frain KM, Robinson C, Dijl JMV. Transport of folded proteins by the Tat system[J]. Protein J, 2019, 38(4):377-388.
doi: 10.1007/s10930-019-09859-y URL |
[32] |
Freudl R. Signal peptides for recombinant protein secretion in bacterial expression systems[J]. Microbial Cell Factories, 2018, 17(1):52-62.
doi: 10.1186/s12934-018-0901-3 URL |
[33] | Vivianne J, Goosens CG, Dijl JMV, et al. The Tat system of Gram-positive bacteria[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2014, 1843(8):1698-1706. |
[34] |
Van DPR, Mader U, Homuth G, et al. Environmental salinity determines the specificity and need for Tat-dependent secretion of the YwbN protein in Bacillus subtilis[J]. PLoS One, 2011, 6(3):e18140.
doi: 10.1371/journal.pone.0018140 URL |
[35] |
Monteferrante CG, Miethke M, Vand PR, et al. Specific targeting of the metallophosphoesterase YkuE to the Bacillus cell wall requires the Twin-arginine translocation system[J]. Journal of Biological Chemistry, 2012, 287(35):29789-29800.
doi: 10.1074/jbc.M112.378190 URL |
[36] |
Palmer T, Stansfeld PJ. Targeting of proteins to the twin-arginine translocation pathway[J]. Mol Microbiol, 2020, 113(5):861-871.
doi: 10.1111/mmi.14461 pmid: 31971282 |
[37] | Goosens VJ, Van DJM. Twin-arginine protein translocation[J]. Curr Top Microbiol Immunol, 2017, 404:69-94. |
[38] | Goosens VJ, De-San-Eustaquio-Campillo A, Carballido-López R, et al. A Tat menage a trois-the role of Bacillus subtilis TatAc in twin-arginine protein translocation[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2015, 1853(10):2425-2753. |
[39] |
Walther TH, Gottselig C, Grage SL, et al. Folding and self-assembly of the TatA translocation pore based on a charge zipper mechanism[J]. Cell, 2013, 152(1-2):316-326.
doi: 10.1016/j.cell.2012.12.017 URL |
[40] |
Kang XM, Cai X, Huang ZX, et al. Construction of highly active secretory expression system in Bacillus subtilis of a recombinant amidase by promoter and signal peptide engineering[J]. Int J Biol Macromol, 2020, 143:833-841.
doi: 10.1016/j.ijbiomac.2019.09.144 URL |
[41] |
Guan CR, Cui WJ, Cheng JT, et al. Construction of highly active secretory expression system via an engineered dual promoter and a highly efficient signal peptidein Bacillus subtilis[J]. New Biotechnology, 2016, 33(3):372-379.
doi: 10.1016/j.nbt.2016.01.005 URL |
[42] |
Li YH, Shi CS, Li DK, et al. Engineering a highly effificient expression system to produce BcaPRO protease in Bacillus subtilis by an optimized promoter and signal peptide[J]. International Journal of Biological Macromolecules, 2019, 138:903-911.
doi: 10.1016/j.ijbiomac.2019.07.175 URL |
[43] |
Tian JW, Long X, Tian YQ, et al. Enhanced extracellular recombinant keratinase activity in Bacillus subtilis SCK6 through signal peptide optimization and site-directed mutagenesis[J]. RSC Advances, 2019, 9(57):33337-33344.
doi: 10.1039/C9RA07866E URL |
[44] | Feng X, Liu S, Jiao Y, et al. Enhanced extracellular production of L-asparaginase from Bacillus subtilis 168 by B. subtilis WB600 through a combined strategy[J]. Applied Microbiology & Biotechnology, 2017, 101(4):1509-1520. |
[45] |
Song YF, Fu G, Dong HN, et al. High-efficiency Secretion of β-mannanase in Bacillus subtilis through protein synjournal and secretion optimization[J]. Journal of Agricultural and Food Chemistry, 2017, 65(12):2540-2548.
doi: 10.1021/acs.jafc.6b05528 URL |
[46] |
Zhang JJ, Kang Z, Lin ZM, et al. High-level extracellular production of alkaline polygalacturonate lyase in Bacillus subtilis with optimized regulatory elements[J]. Bioresource Technology, 2013, 146:543-548.
doi: 10.1016/j.biortech.2013.07.129 URL |
[47] | Gu YY, Zheng JY, Feng J, et al. Improvement of levan production in Bacillus amyloliquefaciens through metabolic optimization of regulatory elements[J]. Applied Microbiology & Biotechnology, 2017, 101(10):4163-4142. |
[48] |
Wang YP, Liu YH, Wang ZX, et al. Influence of promoter and signal peptide on the expression of pullulanase in Bacillus subtilis[J]. Biotechnology Letters, 2014, 36(9):1783-1789.
doi: 10.1007/s10529-014-1538-x URL |
[49] |
Huang X, Cao LC, Qin ZM, et al. Tat-independent secretion of polyethylene terephthalate hydrolase PETase in Bacillus subtilis 168 mediated by its native signal peptide[J]. Journal of Agricultural and Food Chemistry, 2018, 66(50):13217-13227.
doi: 10.1021/acs.jafc.8b05038 URL |
[50] | 周勇. 嗜麦芽糖寡养单胞菌脂肪酶LipS在枯草芽孢杆菌中的高效分泌表达[D]. 杭州:浙江大学, 2015. |
Zhou Y. High level secretionexpression of a lipasee from Stenotrophompnas maltophilia in Bacillus subtilis[J]. Hangzhou:Zhejiang University, 2015. | |
[51] |
Ren GH, Cao LC, Kong W, et al. Efficient secretion of the β-galactosidase Bgal1-3 via both Tat-dependent and Tat-independent pathways in Bacillus subtilis[J]. Journal of Agricultural and Food Chemistry, 2016, 64(28):5708-5726.
doi: 10.1021/acs.jafc.6b01735 URL |
[52] |
Chen JQ, Gai YM, Fu G, et al. Enhanced extracellular production of α-amylase in Bacillus subtilis by optimization of regulatory elements and over-expression of PrsA lipoprotein[J]. Biotechnology Letters, 2015, 37(4):899-906.
doi: 10.1007/s10529-014-1755-3 URL |
[53] | 马樱芳. 基于ARTP诱变、表达元件定向改造及发酵优化提高枯草芽孢杆菌生产重组碱性淀粉酶的水平[D]. 无锡:江南大学, 2016. |
Ma YF. Improving the yield of recombinant alkaline amylase in Bacillus subtillus by ARTP mutagenesis, directed modification of expression elements and fermentation optimization[J]. Wuxi:Jiangnan University, 2016. | |
[54] | 刘金岚, 付刚, 董会娜, 等. 通过信号肽筛选优化耐高温α-淀粉酶在枯草芽孢杆菌中的分泌[J]. 工业微生物, 2017, 47(1):17-23. |
Liu JL, Fu G, Dong HN, et al. Optimization of thermostable α-amylase secretion by screening of optimal signal peptide in Bacillus subtilis[J]. Industrial Microbiology, 2017, 47(1):17-23. | |
[55] | 袁林, 曾静, 郭建军, 等. 极端嗜热酸性α-淀粉酶PFA在枯草芽孢杆菌中的高效分泌表达[J]. 食品科学, 2018, 39(18):100-108. |
Yuan L, Zeng J, Guo JJ, et al. Effificient secretory expression of hyperthermoacidophilic α-Amylase PFA in Bacillus subtilis WB600[J]. Food Science, 2018, 39(18):100-108. | |
[56] | 张士彬, 陈景奇, 崔艳艳, 等. 中温α-淀粉酶基因在枯草芽孢杆菌中的高效表达及其发酵条件优化[J]. 食品与发酵工业, 2016, 42(4):50-56. |
Zhang SB, Chen JQ, Cui YY, et al. High level expression of medium α-amylase in Bacillus subtilis and optimization of fermentation conditions[J]. Food and Fermentation Industries, 2016, 42(4):50-56. | |
[57] |
Fu LL, Xu ZR, Shuai JB, et al. High-level secretion of a chimeric thermostable lichenase from Bacillus subtilis by screening of site-mutated signal peptides with structural alterations[J]. Current Microbiology, 2008, 56(3):287-292.
doi: 10.1007/s00284-007-9077-5 URL |
[58] | Caspers M, Brockmeier U, Degering C, et al. Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide[J]. Applied Microbiology & Biotechnology, 2010, 86(6):1877-1885. |
[59] | 祝发明, 刘辉, 曹要玲, 等. 枯草芽孢杆菌AmyX基因信号肽性能优化研究[J]. 西北农林科技大学学报:自然科学版, 2006, 36(9):11-16. |
Zhu FM, Liu H, Cao YL, et al. Studies on optimizing the signal peptide of AmyX protein from B. subtilis[J]. Journal of Northwest A&F University:Social Science Edition, 2006, 36(9):11-16. | |
[60] |
Yao DB, Su LQ, Li N, et al. Enhanced extracellular expression of Bacillus stearothermophilus α-amylase in Bacillus subtilis through signal peptide optimization, chaperone overexpression and α-amylase mutant selection[J]. Microbial Cell Factories, 2019, 18(1):69-81.
doi: 10.1186/s12934-019-1119-8 URL |
[61] |
Degering C, Eggert T, Puls M, et al. Optimization of protease secretion in Bacillus subtilis and Bacillus licheniformis by screening of homologous and heterologous signal peptides[J]. Applied and Environmental Microbiology, 2010, 76(19):6370-6376.
doi: 10.1128/AEM.01146-10 URL |
[62] | Tsuji S, Tanaka K, Takenaka S, et al. Enhanced secretion of natto phytase by Bacillus subtilis[J]. Journal of the Agricultural Chemical Society of Japan, 2015, 79(11):1906-1914. |
[63] | 蒋蕊. α-淀粉酶共表达系统的研究及在枯草芽孢杆菌中最优信号肽的筛选[D]. 昆明:云南师范大学, 2019. |
Jiang R. Research on co-expression of α-amylase and screening of optimal signal in Bacillus subtilis[J]. Kunming:Yunnan Normal University, 2019. | |
[64] | 李雨桐. 嗜热脂肪芽孢杆菌麦芽糖淀粉酶在枯草芽孢杆菌中的重组表达及发酵优化[D]. 无锡:江南大学, 2018. |
Li YT. Recombinant expression and fermentation optimization of Bacillus stearothermophilus maltogenic amylase in Bacillus subtilis[J]. Wuxi:Jiangnan University, 2018. | |
[65] |
Fu G, Liu JL, Li JS, et al. Systematic screening of optimal signal peptides for secretory production of heterologous proteins in Bacillus subtilis[J]. Journal of Agricultural and Food Chemistry, 2018, 66(50):13141-13151.
doi: 10.1021/acs.jafc.8b04183 URL |
[66] | Zhang WW, Yang MM, Yang YD, et al. Optimal secretion of alkali-tolerant xylanase in Bacillus subtilis by signal peptide screening[J]. Applied Microbiology & Biotechnology, 2016, 100(20):8425-8756. |
[67] |
Albiniak AM, Matos CFRO, Branston SD, et al. High-level secretion of a recombinant protein to the culture medium with a Bacillus subtilis twin-arginine translocation system in Escherichia coli[J]. FEBS Journal, 2013, 280(16):3810-3821.
doi: 10.1111/febs.12376 URL |
[68] | Low KO, Jonet MA, Ismail NF, et al. Optimization of a Bacillus sp signal peptide for improved recombinant protein secretion and cell viability in Escherichia coli[J]. Bioengineered Bugs, 2012, 3(6):334-338. |
[69] |
Zhang FY, He HH, Deng T, et al. N-terminal fused signal peptide prompted extracellular production of a Bacillus-derived alkaline and thermo stable xylanase in E. coli through cell autolysis[J]. Applied Biochemistry and Biotechnology, 2020, 192:339-352.
doi: 10.1007/s12010-020-03323-9 URL |
[70] |
Hemmerich J, Rohe P, Kleine B, et al. Use of a Sec signal peptide library from Bacillus subtilis for the optimization of cutinase secretion in Corynebacterium glutamicum[J]. Microbial Cell Factories, 2016, 15(1):208-219.
doi: 10.1186/s12934-016-0604-6 URL |
[71] | 刘慧玲. 分泌蛋白基因编码区5'端密码子使用偏好性研究[D]. 杨凌:西北农林科技大学, 2016. |
Liu HL. Codon usage bias in 5' terminal of coding sequences reveales an distinct enrichmant of gene functions[J]. Yangling:Northwest A&F University, 2016. | |
[72] |
Zalucki YM, Power PM, Jennings MP. Selection for efficient translation initiation biases codon usage at second amino acid position in secretory proteins[J]. Nucleic Acids Research, 2007, 35(17):5748-5754.
doi: 10.1093/nar/gkm577 URL |
[73] | Power PM, Jones RA, Beacham IR, et al. Whole genome analysis reveals a high incidence of non-optimal codons in secretory signal sequences of Escherichia coli[J]. Biochemical & Biophysical Research Communications, 2004, 322(3):1038-1044. |
[74] |
Li YD, Li YQ, Chen JS, et al. Whole genome analysis of non-optimal codon usage in secretory signal sequences of Streptomyces coelicolor[J]. Biosystems, 2006, 85(3):225-230.
doi: 10.1016/j.biosystems.2006.02.006 URL |
[75] |
Zalucki YM, Jennings MP. Experimental confirmation of a key role for non-optimal codons in protein export[J]. Biochemical and Biophysical Research Communications, 2007, 355(1):143-148.
doi: 10.1016/j.bbrc.2007.01.126 URL |
[76] | Zalucki YM, Gittins KL, Jennings MP. Secretory signal sequence non-optimal codons are required for expression and export of β-lactamase[J]. Biochemical & Biophysical Research Communications, 2008, 366(1):135-141. |
[77] | Zalucki YM, Jones CE, Ng PSK, et al. Signal sequence non-optimal codons are required for the correct folding of mature maltose binding protein[J]. Biochimica Et Biophysica Acta, 2010, 1798(6):1244-1249. |
[78] |
Mahlab S, Linial M, Pilpel Y. Speed controls in translating secretory proteins in Eukaryotes-an evolutionary perspective[J]. Plos Computational Biology, 2014, 10(1):e1003294.
doi: 10.1371/journal.pcbi.1003294 URL |
[79] |
Pechmann S, Chartron JW, Frydman J. Local slowdown of translation by nonoptimal codons promotes nascent-chain recognition by SRP in vivo[J]. Nature Structural & Molecular Biology, 2014, 21(12):1100-1105.
doi: 10.1038/nsmb.2919 URL |
[80] | 陈景奇. α-淀粉酶的异源表达、调控元件优化和分泌瓶颈鉴定[D]. 天津:天津大学, 2015. |
Chen JQ. The heterologous expression of α-amylase regulatory element optimization and identification of secretion bottleneck[J]. Tianjin:Tianjin University, 2015. | |
[81] |
Muller JP, Bron S, Venema G, et al. Chaperone-like activities of the CsaA protein of Bacillus subtilis[J]. Microbiology, 2000, 146(1):77-88.
doi: 10.1099/00221287-146-1-77 URL |
[82] |
Muller JP, Ozegowski J, Vettermann S, et al. Interaction of Bacillus subtilis CsaA with SecA and precursor proteins[J]. Biochemical Journal, 2000, 348(2):367-373.
doi: 10.1042/bj3480367 URL |
[83] |
Kakeshita H, Kageyama Y, Ara K, et al. Enhanced extracellular production of heterologous proteins in Bacillus subtilis by deleting the C-terminal region of the SecA secretory machinery[J]. Molecular Biotechnology, 2010, 46(3):250-257.
doi: 10.1007/s12033-010-9295-0 URL |
[84] | Mulder KCL, Bandola J, Schumann W. Construction of an artificial secYEG operon allowing high level secretion of α-amylase[J]. Protein Expression & Purification, 2013, 89(1):92-96. |
[85] |
Vitikainen M, Pummi T, Airaksinen U, et al. Quantitation of the capacity of the secretion apparatus and requirement for PrsA in growth and secretion of α-amylase in Bacillus subtilis[J]. Journal of Bacteriology, 2001, 183(6):1881-1890.
doi: 10.1128/JB.183.6.1881-1890.2001 URL |
[86] |
Wu SC, Ye R, Wu XC, et al. Enhanced secretory production of a single-chain antibody fragment from Bacillus subtilis by coproduction of molecular chaperones[J]. Journal of Bacteriology, 1998, 180(11):2830-2835.
doi: 10.1128/JB.180.11.2830-2835.1998 URL |
[87] |
Kontinen VP, Sarvas M. The PrsA lipoprotein is essential for protein secretion in Bacillus subtilis and sets a limit for high-level secretion[J]. Molecular Microbiology, 2010, 8(4):727-737.
doi: 10.1111/mmi.1993.8.issue-4 URL |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 杨冬, 唐璎. 枯草芽孢杆菌WTX1胞外酶降解AFB1酶学特性及降解位点分析[J]. 生物技术通报, 2023, 39(4): 93-102. |
[3] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[4] | 祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146. |
[5] | 马艳琴, 邱益彬, 李莎, 徐虹. 透明质酸的生物合成及其代谢工程的研究进展[J]. 生物技术通报, 2022, 38(2): 252-262. |
[6] | 张倩, 徐春燕, 张铎, 王亚会, 梁新盈, 李慧. 黄褐土玉米秸秆腐解菌株筛选及其促腐能力研究[J]. 生物技术通报, 2022, 38(12): 233-243. |
[7] | 赵宝顶, 吕佳, 申玉玉, 桂玲, 陈钟秀, 陈杰, 路福平, 黎明. 基于信号肽和分子伴侣策略促进大肠杆菌高效转化尿苷[J]. 生物技术通报, 2022, 38(11): 238-249. |
[8] | 唐璎, 黄佳, 邓展瑞, 杨晓楠. 一株枯草芽孢杆菌降解黄曲霉毒素B1产物分析[J]. 生物技术通报, 2021, 37(12): 82-90. |
[9] | 张维娇, 金学荣, 徐雅晴, 李江华, 堵国成, 康振. 枯草芽孢杆菌表达与调控工具相关研究进展[J]. 生物技术通报, 2020, 36(4): 26-33. |
[10] | 付首颖, 夏苗苗, 张祎凝, 刘川, 涂然, 张大伟. 核黄素工业菌株高通量筛选方法的建立和应用[J]. 生物技术通报, 2020, 36(4): 47-53. |
[11] | 张钰文, 袁航, 于江悦, 马晓晓, 史超硕, 李玉. 一株高效降解羽毛废弃物菌株的筛选及表达条件优化[J]. 生物技术通报, 2019, 35(9): 93-98. |
[12] | 赵晓霞, 牛世全, 文娜, 苏锋锋. 黄芪根腐病生防芽孢杆菌的筛选鉴定与盆栽防效试验[J]. 生物技术通报, 2019, 35(9): 107-111. |
[13] | 邱锦, 黄火清, 姚斌, 罗会颖. 解淀粉芽孢杆菌淀粉酶催化活力改良及其在枯草芽孢杆菌中的高效表达[J]. 生物技术通报, 2019, 35(9): 134-143. |
[14] | 凌翓, 纪明华, 段海燕, 史吉平, 孙俊松. 木糖酸氧化途径在枯草芽孢杆菌的构建及转化乙醇酸的研究[J]. 生物技术通报, 2019, 35(6): 76-82. |
[15] | 郭磊周, 韩佳慧, 唐殷, 李江, 黄程, 代其林, 王劲, 平淑珍, 江世杰. DrwH类信号肽序列对其抗氧化功能的影响[J]. 生物技术通报, 2019, 35(5): 125-132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||