生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 61-73.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0139
陈广霞1(), 李秀杰1, 蒋锡龙1, 单雷2, 张志昌3, 李勃1()
收稿日期:
2023-02-16
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
李勃,男,博士,研究员,研究方向:葡萄高效栽培;E-mail: sdtalibo@163.com作者简介:
陈广霞,女,博士,助理研究员,研究方向:葡萄逆境分子生物学;E-mail: cguangxia2004@126.com
基金资助:
CHEN Guang-xia1(), LI Xiu-jie1, JIANG Xi-long1, SHAN Lei2, ZHANG Zhi-chang3, LI Bo1()
Received:
2023-02-16
Published:
2023-11-26
Online:
2023-12-20
摘要:
植物小分子信号肽(small signaling peptides, SSPs)是一类蛋白长度小于120个氨基酸的小肽,作为新型信号分子在植物应答非生物逆境胁迫中发挥重要的作用。植物中含有千余种SSPs,多种多样的结构特点、修饰过程与不同受体的结合发挥其特异的功能,参与植物与环境之间的互作。挖掘鉴定植物SSPs功能基因,解析它们应答非生物逆境胁迫的调控机制,对增强植物抗性、改善植物生长具有重要的理论与实践意义。植物SSPs主要包括胞外非分泌型小肽、胞内非分泌型小肽、胞外翻译后修饰分泌型小肽和胞外富含半胱氨酸分泌型小肽四大类。介绍了四类植物SSPs的结构、特征;阐述了它们以SSP配体结合LRR-RLK受体激酶完成信号转导过程,以激活下游抗性基因表达为模式的调控机制;重点综述了它们在干旱、高温、盐渍、营养等非生物逆境胁迫应答中的生物学功能及调控机制。最后讨论了植物SSPs未来研究的方向和有待解决的问题,还对SSPs类生长调节剂的开发前景进行了展望,旨在为提高植物应对环境胁迫和实现农业可持续发展提供新的思路和路径。
陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73.
CHEN Guang-xia, LI Xiu-jie, JIANG Xi-long, SHAN Lei, ZHANG Zhi-chang, LI Bo. Research Progress in Plant Small Signaling Peptides Involved in Abiotic Stress Response[J]. Biotechnology Bulletin, 2023, 39(11): 61-73.
类别 Classification | 基因 Gene | 功能 Function | 物种 Species | 参考文献Reference |
---|---|---|---|---|
胞外非分泌型小肽Extracellular non-secretory small peptides | Systemin系统素 | 植物免疫反应Plant immune response | 番茄Tomato | [ |
AtPep1内源多肽 | 抗病原菌防御Anti-pathogen defense | 拟南 Arabidopsis | [ | |
胞内非分泌型小肽Intracellular non-secretory small peptides | ENOD40 | 植物固氮过程Plant nitrogen fixation process | 豆类Legumes | [ |
PLS(Polaris) | 根生长Root growth | 拟南芥Arabidopsis | [ | |
ROT4/DVL1 | 极性细胞增殖Polar cells proliferation | 拟南芥Arabidopsis | [ | |
胞外翻译后修饰分泌型小肽 Extracellular post-translationally modified secretory small peptides | CLE(CLAVATA3/Embryo Surrounding Region-Related) | 分生组织分化Meristem differentiation | 拟南芥Arabidopsis | [ |
TDIF | 木质部导管分化Xylem vessel differentiation | 拟南芥Arabidopsis | [ | |
PSK(植物硫肽素Phytosulfokine) | 植物生长发育和免疫应答Plant growth and development and immune response | 水稻Rice | [ | |
PSY1(八氢番茄红素合成酶Phytoene synthase) | 细胞增殖和膨胀Cell proliferation and expansion | 拟南芥Arabidopsis | [ | |
CEP(C端编码的肽C-terminally encode peptide) | 植物发育Plant development | 拟南芥Arabidopsis | [ | |
RGF1 | 根分生组织生长Root meristem growth | 拟南芥Arabidopsis | [ | |
IDA(花序缺乏脱落Inflorescence deficient in abscission) | 花器官脱落Abscission of floral organs | 拟南芥Arabidopsis | [ | |
CLE-RS1(CLAVATA3/ESR-related-root signal1) | 根结瘤Root nodulation | 豆类Legumes | [ | |
胞外富含半胱氨酸分泌型小肽 Extracellular cysteine-rich peptides secretory small peptides | PDFs植物防御素 | 植物先天免疫 Plant innate immunity | 拟南芥Arabidopsis | [ |
RALF(快速碱化因子Rapid alkalinization factor) | 细胞快速碱性化Cells rapid alkalization | 拟南芥Arabidopsis | [ | |
TPD1(Tapetum determinant l) | 绒毡层细胞命运决定Tapetal cell fate determination | 拟南芥Arabidopsis | [ | |
LURE | 花粉管导向Pollen tube guidance | 拟南芥Arabidopsis | [ | |
EA1(Egg apparatus 1) | 花粉管的形成Formation of pollen tube | 玉米Maize | [ | |
EPF(表皮模式因子Epidermal patterning factor) | 气孔发育Plant tomatal development | 拟南芥Arabidopsis | [ | |
LAT52 | 花粉萌发Pollen germination | 拟南芥Arabidopsis | [ | |
STOMAGEN气孔蛋白 | 气孔形成Stomatal formation | 拟南芥Arabidopsis | [ |
表1 植物小分子信号肽的类型及基因功能
Table 1 Systematic classification of plant small signaling peptides and relevant functions of genes
类别 Classification | 基因 Gene | 功能 Function | 物种 Species | 参考文献Reference |
---|---|---|---|---|
胞外非分泌型小肽Extracellular non-secretory small peptides | Systemin系统素 | 植物免疫反应Plant immune response | 番茄Tomato | [ |
AtPep1内源多肽 | 抗病原菌防御Anti-pathogen defense | 拟南 Arabidopsis | [ | |
胞内非分泌型小肽Intracellular non-secretory small peptides | ENOD40 | 植物固氮过程Plant nitrogen fixation process | 豆类Legumes | [ |
PLS(Polaris) | 根生长Root growth | 拟南芥Arabidopsis | [ | |
ROT4/DVL1 | 极性细胞增殖Polar cells proliferation | 拟南芥Arabidopsis | [ | |
胞外翻译后修饰分泌型小肽 Extracellular post-translationally modified secretory small peptides | CLE(CLAVATA3/Embryo Surrounding Region-Related) | 分生组织分化Meristem differentiation | 拟南芥Arabidopsis | [ |
TDIF | 木质部导管分化Xylem vessel differentiation | 拟南芥Arabidopsis | [ | |
PSK(植物硫肽素Phytosulfokine) | 植物生长发育和免疫应答Plant growth and development and immune response | 水稻Rice | [ | |
PSY1(八氢番茄红素合成酶Phytoene synthase) | 细胞增殖和膨胀Cell proliferation and expansion | 拟南芥Arabidopsis | [ | |
CEP(C端编码的肽C-terminally encode peptide) | 植物发育Plant development | 拟南芥Arabidopsis | [ | |
RGF1 | 根分生组织生长Root meristem growth | 拟南芥Arabidopsis | [ | |
IDA(花序缺乏脱落Inflorescence deficient in abscission) | 花器官脱落Abscission of floral organs | 拟南芥Arabidopsis | [ | |
CLE-RS1(CLAVATA3/ESR-related-root signal1) | 根结瘤Root nodulation | 豆类Legumes | [ | |
胞外富含半胱氨酸分泌型小肽 Extracellular cysteine-rich peptides secretory small peptides | PDFs植物防御素 | 植物先天免疫 Plant innate immunity | 拟南芥Arabidopsis | [ |
RALF(快速碱化因子Rapid alkalinization factor) | 细胞快速碱性化Cells rapid alkalization | 拟南芥Arabidopsis | [ | |
TPD1(Tapetum determinant l) | 绒毡层细胞命运决定Tapetal cell fate determination | 拟南芥Arabidopsis | [ | |
LURE | 花粉管导向Pollen tube guidance | 拟南芥Arabidopsis | [ | |
EA1(Egg apparatus 1) | 花粉管的形成Formation of pollen tube | 玉米Maize | [ | |
EPF(表皮模式因子Epidermal patterning factor) | 气孔发育Plant tomatal development | 拟南芥Arabidopsis | [ | |
LAT52 | 花粉萌发Pollen germination | 拟南芥Arabidopsis | [ | |
STOMAGEN气孔蛋白 | 气孔形成Stomatal formation | 拟南芥Arabidopsis | [ |
[1] |
Sun KJ, Wook JB, Jungmook K. Signaling peptides regulating abiotic stress responses in plants[J]. Front Plant Sci, 2021, 12: 704490.
doi: 10.3389/fpls.2021.704490 URL |
[2] |
Xie HP, Zhao W, Li WL, et al. Small signaling peptides mediate plant adaptions to abiotic environmental stress[J]. Planta, 2022, 255(4): 72.
doi: 10.1007/s00425-022-03859-6 pmid: 35218440 |
[3] |
Olsson V, Joos L, Zhu SS, et al. Look closely, the beautiful may be small: precursor-derived peptides in plants[J]. Annu Rev Plant Biol, 2019, 70: 153-186.
doi: 10.1146/annurev-arplant-042817-040413 pmid: 30525926 |
[4] |
Zhang HY, Zhang H, Lin JX. Systemin-mediated long-distance systemic defense responses[J]. New Phytol, 2020, 226(6): 1573-1582.
doi: 10.1111/nph.16495 pmid: 32083726 |
[5] |
Hirakawa Y. CLAVATA3, a plant peptide controlling stem cell fate in the meristem[J]. Peptides, 2021, 142: 170579.
doi: 10.1016/j.peptides.2021.170579 URL |
[6] |
Fletcher JC. Recent advances in Arabidopsis CLE peptide signaling[J]. Trends Plant Sci, 2020, 25(10): 1005-1016.
doi: 10.1016/j.tplants.2020.04.014 URL |
[7] |
Aggarwal S, Kumar A, Jain M, et al. C-terminally encoded peptides(CEPs)are potential mediators of abiotic stress response in plants[J]. Physiol Mol Biol Plants, 2020, 26(10): 2019-2033.
doi: 10.1007/s12298-020-00881-4 |
[8] |
Hammes UZ. Novel roles for phytosulfokine signalling in plant-pathogen interactions[J]. Plant Cell Environ, 2016, 39(7): 1393-1395.
doi: 10.1111/pce.v39.7 URL |
[9] |
McCubbin AG, Kao T. Molecular recognition and response in pollen and pistil interactions[J]. Annu Rev Cell Dev Biol, 2000, 16: 333-364.
pmid: 11031240 |
[10] |
Zhong S, Li L, Wang ZJ, et al. RALF peptide signaling controls the polytubey block in Arabidopsis[J]. Science, 2022, 375(6578): 290-296.
doi: 10.1126/science.abl4683 URL |
[11] |
Yamada M, Han XW, Benfey PN. RGF1 controls root meristem size through ROS signalling[J]. Nature, 2020, 577(7788): 85-88.
doi: 10.1038/s41586-019-1819-6 |
[12] | Kenny FN, Drymoussi Z, Delaine-Smith R, et al. Tissue stiffening promotes keratinocyte proliferation through activation of epidermal growth factor signaling[J]. J Cell Sci, 2018, 131(10): jcs215780. |
[13] |
Kosentka PZ, Overholt A, Maradiaga R, et al. EPFL signals in the boundary region of the SAM restrict its size and promote leaf initiation[J]. Plant Physiol, 2019, 179(1): 265-279.
doi: 10.1104/pp.18.00714 pmid: 30409857 |
[14] |
Okuda S. Molecular mechanisms of plant peptide binding to receptors[J]. Peptides, 2021, 144: 170614.
doi: 10.1016/j.peptides.2021.170614 URL |
[15] |
Cheng W, Wang ZT, Xu F, et al. Genome-wide identification of LRR-RLK family in Saccharum and expression analysis in response to biotic and abiotic stress[J]. Curr Issues Mol Biol, 2021, 43(3): 1632-1651.
doi: 10.3390/cimb43030116 pmid: 34698114 |
[16] |
Li XX, Salman A, Guo C, et al. Identification and characterization of LRR-RLK family genes in potato reveal their involvement in peptide signaling of cell fate decisions and biotic/abiotic stress responses[J]. Cells, 2018, 7(9): 120.
doi: 10.3390/cells7090120 URL |
[17] | 蔺欢, 王俊娟, 孙振婷, 等. 植物小分子肽的研究进展[J]. 西北植物学报, 2021, 41(1): 168-180. |
Lin H, Wang JJ, Sun ZT, et al. The research progress of plant small molecular peptides[J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(1): 168-180. | |
[18] | 孙翔, 程丽军, 刘志文, 等. 小肽激素调控植物生殖发育的研究进展[J]. 自然杂志, 2021, 43(2): 105-111. |
Sun X, Cheng LJ, Liu ZW, et al. Peptides regulators in plant reproduction[J]. Chin J Nat, 2021, 43(2): 105-111.
doi: 10.3969/j.issn.0253-9608.2021.02.004 |
|
[19] |
Safaeizadeh M, Boller T. Differential and tissue-specific activation pattern of the AtPROPEP and AtPEPR genes in response to biotic and abiotic stress in Arabidopsis thaliana[J]. Plant Signal Behav, 2019, 14(5): e1590094.
doi: 10.1080/15592324.2019.1590094 URL |
[20] |
Staehelin C, Charon C, Boller T, et al. Medicago truncatula plants overexpressing the early nodulin gene enod40 exhibit accelerated mycorrhizal colonization and enhanced formation of arbuscules[J]. PNAS, 2001, 98(26): 15366-15371.
pmid: 11752473 |
[21] |
Charon C, Johansson C, Kondorosi E, et al. enod40 induces dedifferentiation and division of root cortical cells in legumes[J]. PNAS, 1997, 94(16): 8901-8906.
doi: 10.1073/pnas.94.16.8901 pmid: 11038563 |
[22] |
Liu JL, Rowe J, Lindsey K. Hormonal crosstalk for root development: a combined experimental and modeling perspective[J]. Front Plant Sci, 2014, 5: 116.
doi: 10.3389/fpls.2014.00116 pmid: 24734037 |
[23] |
Ikeuchi M, Yamaguchi T, Kazama T, et al. ROTUNDIFOLIA4 regulates cell proliferation along the body axis in Arabidopsis shoot[J]. Plant Cell Physiol, 2011, 52(1): 59-69.
doi: 10.1093/pcp/pcq138 pmid: 20826883 |
[24] |
Yang SH, Bai JP, Wang JH. TDIF peptides regulate root growth by affecting auxin homeostasis and PINs expression in Arabidopsis thaliana[J]. Planta, 2020, 251(6): 109.
doi: 10.1007/s00425-020-03406-1 |
[25] |
Tost AS, Kristensen A, Olsen LI, et al. The PSY peptide family-expression, modification and physiological implications[J]. Genes, 2021, 12(2): 218.
doi: 10.3390/genes12020218 URL |
[26] |
Santiago J, Brandt B, Wildhagen M, et al. Mechanistic insight into a peptide hormone signaling complex mediating floral organ abscission[J]. eLife, 2016, 5: e15075.
doi: 10.7554/eLife.15075 URL |
[27] |
Yoro E, Nishida H, Ogawa-Ohnishi M, et al. PLENTY, a hydroxyproline O-arabinosyltransferase, negatively regulates root nodule symbiosis in Lotus japonicus[J]. J Exp Bot, 2019, 70(2): 507-517.
doi: 10.1093/jxb/ery364 URL |
[28] |
Carvalho AD, Gomes VM. Plant defensins and defensin-like peptides - biological activities and biotechnological applications[J]. Curr Pharm Des, 2011, 17(38): 4270-4293.
doi: 10.2174/138161211798999447 URL |
[29] |
Yang SL, Xie LF, Mao HZ, et al. Tapetum determinant1 is required for cell specialization in the Arabidopsis anther[J]. Plant Cell, 2003, 15(12): 2792-2804.
doi: 10.1105/tpc.016618 URL |
[30] |
Takeuchi H. The role of diverse LURE-type cysteine-rich peptides as signaling molecules in plant reproduction[J]. Peptides, 2021, 142: 170572.
doi: 10.1016/j.peptides.2021.170572 URL |
[31] |
Gray-Mitsumune M, Matton DP. The Egg apparatus 1 gene from maize is a member of a large gene family found in both monocots and dicots[J]. Planta, 2006, 223(3): 618-625.
pmid: 16341706 |
[32] |
Tang WH, Ezcurra I, Muschietti J, et al. A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2[J]. Plant Cell, 2002, 14(9): 2277-2287.
doi: 10.1105/tpc.003103 pmid: 12215520 |
[33] |
Sugano SS, Shimada T, Imai Y, et al. Stomagen positively regulates stomatal density in Arabidopsis[J]. Nature, 2010, 463(7278): 241-244.
doi: 10.1038/nature08682 |
[34] |
Murphy E, Smith S, De Smet I. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance[J]. Plant Cell, 2012, 24(8): 3198-3217.
doi: 10.1105/tpc.112.099010 URL |
[35] |
Furumizu C, Aalen RB. Peptide signaling through leucine-rich repeat receptor kinases: insight into land plant evolution[J]. New Phytol, 2023, 238(3): 977-982.
doi: 10.1111/nph.18827 pmid: 36811171 |
[36] |
Mishra D, Suri GS, Kaur G, et al. Comprehensive analysis of structural, functional, and evolutionary dynamics of Leucine Rich Repeats-RLKs in Thinopyrum elongatum[J]. Int J Biol Macromol, 2021, 183: 513-527.
doi: 10.1016/j.ijbiomac.2021.04.137 pmid: 33933540 |
[37] |
Man J, Gallagher JP, Bartlett M. Structural evolution drives diversification of the large LRR-RLK gene family[J]. New Phytol, 2020, 226(5): 1492-1505.
doi: 10.1111/nph.16455 pmid: 31990988 |
[38] |
Mou SL, Zhang XX, Han ZF, et al. CLE42 binding induces PXL2 interaction with SERK2[J]. Protein Cell, 2017, 8(8): 612-617.
doi: 10.1007/s13238-017-0435-1 pmid: 28677102 |
[39] |
Schlegel J, Denay G, Wink R, et al. Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways[J]. eLife, 2021, 10: e70934.
doi: 10.7554/eLife.70934 URL |
[40] |
Okamoto S, Ohnishi E, Sato S, et al. Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation[J]. Plant Cell Physiol, 2009, 50(1): 67-77.
doi: 10.1093/pcp/pcn194 pmid: 19074184 |
[41] |
Lee JS, Hnilova M, Maes M, et al. Competitive binding of antagonistic peptides fine-tunes stomatal patterning[J]. Nature, 2015, 522(7557): 439-443.
doi: 10.1038/nature14561 |
[42] |
Ge ZX, Zhao YL, Liu MC, et al. LLG2/3 are Co-receptors in BUPS/ANX-RALF signaling to regulate Arabidopsis pollen tube integrity[J]. Curr Biol, 2019, 29(19): 3256-3265.e5.
doi: 10.1016/j.cub.2019.08.032 URL |
[43] |
Tang WH, Kelley D, Ezcurra I, et al. LeSTIG1, an extracellular binding partner for the pollen receptor kinases LePRK1 and LePRK2, promotes pollen tube growth in vitro[J]. Plant J, 2004, 39(3): 343-353.
doi: 10.1111/tpj.2004.39.issue-3 URL |
[44] |
Song W, Liu L, Wang JZ, et al. Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth[J]. Cell Res, 2016, 26(6): 674-685.
doi: 10.1038/cr.2016.62 pmid: 27229311 |
[45] |
Schulze-Muth P, Irmler S, Schröder G, et al. Novel type of receptor-like protein kinase from a higher plant(Catharanthus roseus): cDNA, gene, intramolecular autophosphorylation, and identification of a threonine important for auto- and substrate phosphorylation[J]. J Biol Chem, 1996, 271(43): 26684-26689.
doi: 10.1074/jbc.271.43.26684 pmid: 8900145 |
[46] |
Takahashi G, Betsuyaku S, Okuzumi N, et al. An evolutionarily conserved coreceptor gene is essential for CLAVATA signaling in Marchantia polymorpha[J]. Front Plant Sci, 2021, 12: 657548.
doi: 10.3389/fpls.2021.657548 URL |
[47] | Somssich M, Ma QJ, Weidtkamp-Peters S, et al. Real-time dynamics of peptide ligand-dependent receptor complex formation in planta[J]. Sci Signal, 2015, 8(388): ra76. |
[48] |
Sun YD, Lei L, Macho A, et al. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex[J]. Science, 2013, 342(6158): 624-628.
doi: 10.1126/science.1243825 URL |
[49] |
Pfister A, Barberon M, Alassimone J, et al. A receptor-like kinase mutant with absent endodermal diffusion barrier displays selective nutrient homeostasis defects[J]. eLife, 2014, 3: e03115.
doi: 10.7554/eLife.03115 URL |
[50] |
Bücherl CA, Jarsch IK, Schudoma C, et al. Plant immune and growth receptors share common signalling components but localise to distinct plasma membrane nanodomains[J]. eLife, 2017, 6: e25114.
doi: 10.7554/eLife.25114 URL |
[51] |
Tang J, Han ZF, Sun YD, et al. Structural basis for recognition of an endogenous peptide by the plant receptor kinase PEPR1[J]. Cell Res, 2015, 25(1): 110-120.
doi: 10.1038/cr.2014.161 pmid: 25475059 |
[52] |
Shinohara H, Mori A, Yasue N, et al. Identification of three LRR-RKs involved in perception of root meristem growth factor in Arabidopsis[J]. PNAS, 2016, 113(14): 3897-3902.
doi: 10.1073/pnas.1522639113 pmid: 27001831 |
[53] |
Zhang HQ, Lin XY, Han ZF, et al. Crystal structure of PXY-TDIF complex reveals a conserved recognition mechanism among CLE peptide-receptor pairs[J]. Cell Res, 2016, 26(5): 543-555.
doi: 10.1038/cr.2016.45 pmid: 27055373 |
[54] |
Morita J, Kato K, Nakane T, et al. Crystal structure of the plant receptor-like kinase TDR in complex with the TDIF peptide[J]. Nat Commun, 2016, 7: 12383.
doi: 10.1038/ncomms12383 pmid: 27498761 |
[55] |
Guo XL, Wang JY, Gardner M, et al. Identification of cyst nematode B-type CLE peptides and modulation of the vascular stem cell pathway for feeding cell formation[J]. PLoS Pathog, 2017, 13(2): e1006142.
doi: 10.1371/journal.ppat.1006142 URL |
[56] |
Kondo Y, Ito T, Nakagami H, et al. Plant GSK3 proteins regulate xylem cell differentiation downstream of TDIF-TDR signalling[J]. Nat Commun, 2014, 5: 3504.
doi: 10.1038/ncomms4504 pmid: 24662460 |
[57] |
Wang JZ, Li HJ, Han ZF, et al. Allosteric receptor activation by the plant peptide hormone phytosulfokine[J]. Nature, 2015, 525(7568): 265-268.
doi: 10.1038/nature14858 |
[58] |
Brookbank BP, Patel J, Gazzarrini S, et al. Role of basal ABA in plant growth and development[J]. Genes, 2021, 12(12): 1936.
doi: 10.3390/genes12121936 URL |
[59] |
Lim CW, Baek W, Jung J, et al. Function of ABA in stomatal defense against biotic and drought stresses[J]. Int J Mol Sci, 2015, 16(7): 15251-15270.
doi: 10.3390/ijms160715251 pmid: 26154766 |
[60] |
Takahashi F, Suzuki T, Osakabe Y, et al. A small peptide modulates stomatal control via abscisic acid in long-distance signalling[J]. Nature, 2018, 556(7700): 235-238.
doi: 10.1038/s41586-018-0009-2 |
[61] |
Zhang LS, Shi X, Zhang YT, et al. CLE9 peptide-induced stomatal closure is mediated by abscisic acid, hydrogen peroxide, and nitric oxide in Arabidopsis thaliana[J]. Plant Cell Environ, 2019, 42(3): 1033-1044.
doi: 10.1111/pce.v42.3 URL |
[62] |
Smith S, Zhu SS, Joos L, et al. The CEP5 peptide promotes abiotic stress tolerance, as revealed by quantitative proteomics, and attenuates the AUX/IAA equilibrium in Arabidopsis[J]. Mol Cell Proteom, 2020, 19(8): 1248-1262.
doi: 10.1074/mcp.RA119.001826 URL |
[63] |
Kumpf RP, Shi CL, Larrieu A, et al. Floral organ abscission peptide IDA and its HAE/HSL2 receptors control cell separation during lateral root emergence[J]. PNAS, 2013, 110(13): 5235-5240.
doi: 10.1073/pnas.1210835110 pmid: 23479623 |
[64] |
Zhu QK, Shao YM, Ge ST, et al. A MAPK cascade downstream of IDA-HAE/HSL2 ligand-receptor pair in lateral root emergence[J]. Nat Plants, 2019, 5(4): 414-423.
doi: 10.1038/s41477-019-0396-x pmid: 30936437 |
[65] |
Stührwohldt N, Bühler E, Sauter M, et al. Phytosulfokine(PSK)precursor processing by subtilase SBT3.8 and PSK signaling improve drought stress tolerance in Arabidopsis[J]. J Exp Bot, 2021, 72(9): 3427-3440.
doi: 10.1093/jxb/erab017 pmid: 33471900 |
[66] |
Reichardt S, Piepho HP, Stintzi A, et al. Peptide signaling for drought-induced tomato flower drop[J]. Science, 2020, 367(6485): 1482-1485.
doi: 10.1126/science.aaz5641 pmid: 32217727 |
[67] |
Liu ZY, Hou SG, Rodrigues O, et al. Phytocytokine signalling reopens stomata in plant immunity and water loss[J]. Nature, 2022, 605(7909): 332-339.
doi: 10.1038/s41586-022-04684-3 |
[68] |
Li XM, Han HP, Chen M, et al. Overexpression of OsDT11, which encodes a novel cysteine-rich peptide, enhances drought tolerance and increases ABA concentration in rice[J]. Plant Mol Biol, 2017, 93(1): 21-34.
doi: 10.1007/s11103-016-0544-x URL |
[69] |
Endo S, Shinohara H, Matsubayashi Y, et al. A novel pollen-pistil interaction conferring high-temperature tolerance during reproduction via CLE45 signaling[J]. Curr Biol, 2013, 23(17): 1670-1676.
doi: 10.1016/j.cub.2013.06.060 pmid: 23910659 |
[70] |
Haj-Amor Z, Araya T, Kim DG, et al. Soil salinity and its associated effects on soil microorganisms, greenhouse gas emissions, crop yield, biodiversity and desertification: a review[J]. Sci Total Environ, 2022, 843: 156946.
doi: 10.1016/j.scitotenv.2022.156946 URL |
[71] |
Nakaminami K, Okamoto M, Higuchi-Takeuchi M, et al. AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants[J]. PNAS, 2018, 115(22): 5810-5815.
doi: 10.1073/pnas.1719491115 pmid: 29760074 |
[72] |
Yamaguchi Y, Huffaker A, Bryan AC, et al. PEPR2 is a second receptor for the Pep1 and Pep2 peptides and contributes to defense responses in Arabidopsis[J]. Plant Cell, 2010, 22(2): 508-522.
doi: 10.1105/tpc.109.068874 URL |
[73] |
Chien PS, Nam HG, Chen YR. A salt-regulated peptide derived from the CAP superfamily protein negatively regulates salt-stress tolerance in Arabidopsis[J]. J Exp Bot, 2015, 66(17): 5301-5313.
doi: 10.1093/jxb/erv263 URL |
[74] |
Zhao CZ, Jiang W, Zayed O, et al. The LRXs-RALFs-FER module controls plant growth and salt stress responses by modulating multiple plant hormones[J]. Natl Sci Rev, 2020, 8(1): nwaa149.
doi: 10.1093/nsr/nwaa149 URL |
[75] |
Ohkubo Y, Tanaka M, Tabata R, et al. Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition[J]. Nat Plants, 2017, 3: 17029.
doi: 10.1038/nplants.2017.29 pmid: 28319056 |
[76] |
Delay C, Chapman K, Taleski M, et al. CEP3 levels affect starvation-related growth responses of the primary root[J]. J Exp Bot, 2019, 70(18): 4763-4774.
doi: 10.1093/jxb/erz270 pmid: 31173100 |
[77] |
Araya T, Miyamoto M, Wibowo J, et al. CLE-CLAVATA1 peptide-receptor signaling module regulates the expansion of plant root systems in a nitrogen-dependent manner[J]. PNAS, 2014, 111(5): 2029-2034.
doi: 10.1073/pnas.1319953111 pmid: 24449877 |
[78] |
Ma DC, Endo S, Betsuyaku S, et al. CLE2 regulates light-dependent carbohydrate metabolism in Arabidopsis shoots[J]. Plant Mol Biol, 2020, 104(6): 561-574.
doi: 10.1007/s11103-020-01059-y |
[79] |
Gutiérrez-Alanís D, Yong-Villalobos L, Jiménez-Sandoval P, et al. Phosphate starvation-dependent iron mobilization induces CLE14 expression to trigger root meristem differentiation through CLV2/PEPR2 signaling[J]. Dev Cell, 2017, 41(5): 555-570.e3.
doi: S1534-5807(17)30391-X pmid: 28586647 |
[80] |
Cederholm HM, Benfey PN. Distinct sensitivities to phosphate deprivation suggest that RGF peptides play disparate roles in Arabidopsis thaliana root development[J]. New Phytol, 2015, 207(3): 683-691.
doi: 10.1111/nph.13405 pmid: 25856240 |
[1] | 崔俊美, 魏家萍, 董小云, 王莹, 郑国强, 刘自刚. PIP/PIPL:一类调控植物逆境响应和发育的植物内源性多肽[J]. 生物技术通报, 2023, 39(3): 35-42. |
[2] | 叶红, 王玉昆. 植物PRR免疫受体功能研究进展[J]. 生物技术通报, 2023, 39(12): 1-15. |
[3] | 韩芳英, 胡昕, 王楠楠, 谢裕红, 王晓艳, 朱强. DREBs响应植物非生物逆境胁迫研究进展[J]. 生物技术通报, 2023, 39(11): 86-98. |
[4] | 金云倩, 王彬, 郭书磊, 赵霖熙, 韩赞平. 赤霉素调控玉米种子活力的研究进展[J]. 生物技术通报, 2023, 39(1): 84-94. |
[5] | 胡功政, 崔小蝶, 翟亚军, 贺丹丹. 细菌黏菌素耐药性及其逆转机制研究进展[J]. 生物技术通报, 2022, 38(9): 28-34. |
[6] | 林科运, 段钰晶, 王高升, 孙念礼, 方玉洁, 王幼平. 甘蓝型油菜BnNF-YA1的克隆和功能鉴定[J]. 生物技术通报, 2022, 38(4): 106-116. |
[7] | 雷春霞, 李灿辉, 陈永坤, 龚明. 马铃薯块茎形成的生理生化基础和分子机制[J]. 生物技术通报, 2022, 38(4): 44-57. |
[8] | 杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3): 213-225. |
[9] | 李潇凡, 耿丹丹, 毕瑜林, 江勇, 王志秀, 常国斌, 陈国宏, 白皓. miRNA的非经典作用机制研究进展[J]. 生物技术通报, 2022, 38(12): 1-10. |
[10] | 李文姣, 张忠峰, 刘青, 孙洁, 杨利, 王兴军, 赵术珍. BRs在植物响应非生物胁迫中的作用[J]. 生物技术通报, 2022, 38(1): 228-235. |
[11] | 聂甲玥, 杨文文, 樊红霞, 王幼平, 吴德伟. 植物Pep短肽的研究进展[J]. 生物技术通报, 2021, 37(9): 219-225. |
[12] | 乌凤章, 王贺新. 蛋白质泛素化介导的植物低温胁迫反应[J]. 生物技术通报, 2021, 37(6): 225-235. |
[13] | 王露露, 耿兴敏, 许世达. 乙烯受体在果实成熟及花衰老中的研究进展[J]. 生物技术通报, 2021, 37(3): 144-152. |
[14] | 胡小倩, 张颖翌, 李鑫, 闫海芳. 植物中Remorin蛋白的研究进展[J]. 生物技术通报, 2020, 36(8): 136-143. |
[15] | 马军, 徐通达. 植物非经典生长素信号转导通路解析[J]. 生物技术通报, 2020, 36(7): 15-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||