生物技术通报 ›› 2022, Vol. 38 ›› Issue (1): 278-288.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0167
收稿日期:
2021-02-08
出版日期:
2022-01-26
发布日期:
2022-02-22
作者简介:
武欣媛,女,硕士研究生,研究方向:植物细胞生物学;E-mail: 基金资助:
WU Xin-yuan(), WANG Guang-chao, LIN Jin-xing, JING Yan-ping()
Received:
2021-02-08
Published:
2022-01-26
Online:
2022-02-22
摘要:
光电关联显微镜技术(correlative light and electron microscopy,CLEM)将光学显微镜的高灵敏度和大视场与电子显微镜的高分辨率相结合,弥补了各自成像的局限,可在原位获得更全面、更精细的定位及结构信息,近年来受到广泛关注。目前,该技术广泛应用于亚细胞结构与特定结构的观察、蛋白质的精确定位、囊泡运输及植物免疫等多个重要研究领域。本文总结了CLEM的概念和原理,对标记探针进行了总结分类,着重就该技术在植物学领域的应用以及存在的问题进行了讨论,并对该技术未来的发展与应用作出了展望。
武欣媛, 王广超, 林金星, 荆艳萍. 光电关联显微镜技术及其在植物学研究中的应用[J]. 生物技术通报, 2022, 38(1): 278-288.
WU Xin-yuan, WANG Guang-chao, LIN Jin-xing, JING Yan-ping. Correlative Light and Electron Microscopy and Its Application in Botanical Research[J]. Biotechnology Bulletin, 2022, 38(1): 278-288.
种类 Category | 名称 Name | 特点 Features | 参考文献 Reference |
---|---|---|---|
真空中稳定的荧光探针 Stable fluorescent probes under vacuum | 荧光染料:DAPI、Alex等 Fluorochromes:DAPI,Alexa,etc. | 电子对比度低,电镜下观察不到 | [ |
无机双对比探针 Inorganic dual-contrast probes | 荧光纳米金 Fluoronanogold | 渗透性好,在光镜和电镜下均可直接成像 | [ |
量子点 Quantum dots | 具有高电子密度、良好的光稳定性与抗漂白性,可同时进行不同组分的标记,在光镜和电镜中均可直接成像 | [ | |
基因编码的探针 Genetically encoded probes | 双砷染料-四半胱氨酸系统 Tetracysteinebiarsenical | 目的蛋白连接四半胱氨酸序列,双砷荧光团与之结合而具有强荧光,同时其对DAB具有光转化作用,也可实现在电镜下成像 | [ |
小型单线态氧气发生器 Mini singlet oxygen generator | 分子量比GFP小,在蓝光激发下能够发出绿色荧光,通过氧化DAB形成电镜下可见的嗜锇小体 | [ | |
增强型抗坏血酸过氧化酶 Enhanced ascorbate peroxidase | 当APEX与荧光蛋白结合时,可在活细胞中表达出荧光信号,经过化学固定以及添加DAB和H2O2,可以产生EM可见的反应产物 | [ | |
绿色荧光蛋白及其衍生物 Green fluorescent protein and its derivatives | 需要通过DAB进行光电转化;也可通过高压冷冻与GMA包埋或者Tokuyasu保护荧光蛋白的荧光,实现光电关联 | [ | |
基因编码的化学诱导探针 Genetically-encoded chemically-inducible probes | 荧光重组电子致密的铁蛋白颗粒与感兴趣的蛋白连接,雷帕霉素诱导表达,直接在光镜与电镜下成像 | [ | |
光转换荧光蛋白mEos Photoconvertible fluorescent protein mEos | 电镜制样后,超薄切片中仍保持荧光活性 | [ |
表1 光电关联探针
Table 1 CLEM probes
种类 Category | 名称 Name | 特点 Features | 参考文献 Reference |
---|---|---|---|
真空中稳定的荧光探针 Stable fluorescent probes under vacuum | 荧光染料:DAPI、Alex等 Fluorochromes:DAPI,Alexa,etc. | 电子对比度低,电镜下观察不到 | [ |
无机双对比探针 Inorganic dual-contrast probes | 荧光纳米金 Fluoronanogold | 渗透性好,在光镜和电镜下均可直接成像 | [ |
量子点 Quantum dots | 具有高电子密度、良好的光稳定性与抗漂白性,可同时进行不同组分的标记,在光镜和电镜中均可直接成像 | [ | |
基因编码的探针 Genetically encoded probes | 双砷染料-四半胱氨酸系统 Tetracysteinebiarsenical | 目的蛋白连接四半胱氨酸序列,双砷荧光团与之结合而具有强荧光,同时其对DAB具有光转化作用,也可实现在电镜下成像 | [ |
小型单线态氧气发生器 Mini singlet oxygen generator | 分子量比GFP小,在蓝光激发下能够发出绿色荧光,通过氧化DAB形成电镜下可见的嗜锇小体 | [ | |
增强型抗坏血酸过氧化酶 Enhanced ascorbate peroxidase | 当APEX与荧光蛋白结合时,可在活细胞中表达出荧光信号,经过化学固定以及添加DAB和H2O2,可以产生EM可见的反应产物 | [ | |
绿色荧光蛋白及其衍生物 Green fluorescent protein and its derivatives | 需要通过DAB进行光电转化;也可通过高压冷冻与GMA包埋或者Tokuyasu保护荧光蛋白的荧光,实现光电关联 | [ | |
基因编码的化学诱导探针 Genetically-encoded chemically-inducible probes | 荧光重组电子致密的铁蛋白颗粒与感兴趣的蛋白连接,雷帕霉素诱导表达,直接在光镜与电镜下成像 | [ | |
光转换荧光蛋白mEos Photoconvertible fluorescent protein mEos | 电镜制样后,超薄切片中仍保持荧光活性 | [ |
[1] |
Leis A, Rockel B, Andrees L, et al. Visualizing cells at the nanoscale[J]. Trends Biochem Sci, 2009, 34(2):60-70.
doi: 10.1016/j.tibs.2008.10.011 URL |
[2] |
Zhang P. Correlative cryo-electron tomography and optical microscopy of cells[J]. Curr Opin Struct Biol, 2013, 23(5):763-770.
doi: 10.1016/j.sbi.2013.07.017 URL |
[3] |
Ben-Harush K, Maimon T, Patla I, et al. Visualizing cellular processes at the molecular level by cryo-electron tomography[J]. J Cell Sci, 2010, 123(pt 1):7-12.
doi: 10.1242/jcs.060111 pmid: 20016061 |
[4] |
Giepmans BNG, Deerinck TJ, Smarr BL, et al. Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots[J]. Nat Methods, 2005, 2(10):743-749.
pmid: 16179920 |
[5] | Mironov AA, Beznoussenko GV. Correlative microscopy[M]//Laboratory Methods in Cell Biology - Imaging. Amsterdam:Elsevier, 2013:209-255. |
[6] |
Jahn KA, Barton DA, Kobayashi K, et al. Correlative microscopy:providing new understanding in the biomedical and plant sciences[J]. Micron, 2012, 43(5):565-582.
doi: 10.1016/j.micron.2011.12.004 pmid: 22244153 |
[7] | 李尉兴, 谷陆生, 徐晓君, 等. 冷冻超分辨光电融合成像技术——新挑战, 新机遇[J]. 生物化学与生物物理进展, 2018, 45(9):957-960. |
Li WX, Gu LS, Xu XJ, et al. Cryogenic super-resolution correlative light and electron microscopy(csCLEM):new challenges and new opportunities[J]. Prog Biochem Biophys, 2018, 45(9):957-960. | |
[8] |
Oorschot V, Lindsey BW, Kaslin J, et al. TEM, SEM, and STEM-based immuno-CLEM workflows offer complementary advantages[J]. Sci Rep, 2021, 11:899.
doi: 10.1038/s41598-020-79637-9 pmid: 33441723 |
[9] | Ohta K, Hirashima S, Miyazono Y, et al. Correlation of organelle dynamics between light microscopic live imaging and electron microscopic 3D architecture using FIB-SEM[J]. Microscopy:Oxf, 2021, 70(2):161-170. |
[10] |
Yagüe P, Willemse J, Koning RI, et al. Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae[J]. Nat Commun, 2016, 7:12467.
doi: 10.1038/ncomms12467 URL |
[11] | 王广超, 冯振华, 孙旭东, 等. 高压冷冻技术在拟南芥细胞微结构研究中的应用[J]. 电子显微学报, 2010, 29(2):152-162. |
Wang GC, Feng ZH, Sun XD, et al. Application of high pressure freezing technique in structural study of Arabidopsis thaliana[J]. J Chin Electron Microsc Soc, 2010, 29(2):152-162. | |
[12] | Dillard RS, Hampton CM, Strauss JD, et al. Biological applications at the cutting edge of cryo-electron microscopy[J]. Microsc Microanal, 2018, 24(4):406-419. |
[13] | Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy(STORM)[J]. Nat Methods, 2006, 3(10):793-795. |
[14] |
Betzig E, Patterson GH, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645.
pmid: 16902090 |
[15] |
Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission:stimulated-emission-depletion fluorescence microscopy[J]. Opt Lett, 1994, 19(11):780-782.
pmid: 19844443 |
[16] | 沙乾坤. 超高分辨显微技术的研究[D]. 天津:天津大学, 2016. |
Sha QK. Study on super resolution microscopy[D]. Tianjin:Tianjin University, 2016. | |
[17] |
van Elsland DM, Pujals S, Bakkum T, et al. Ultrastructural imaging of Salmonella-host interactions using super-resolution correlative light-electron microscopy of bioorthogonal pathogens[J]. ChemBioChem, 2018, 19(16):1766-1770.
doi: 10.1002/cbic.v19.16 URL |
[18] | Peddie CJ, Liv N, Hoogenboom JP, et al. Integrated light and scanning electron microscopy of GFP-expressing cells[J]. Methods Cell Biol, 2014, 124:363-389. |
[19] |
Faas FGA, Bárcena M, Agronskaia AV, et al. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy[J]. J Struct Biol, 2013, 181(3):283-290.
doi: 10.1016/j.jsb.2012.12.004 pmid: 23261400 |
[20] |
Zonnevylle AC, Van Tol RF, Liv N, et al. Integration of a high-NA light microscope in a scanning electron microscope[J]. J Microsc, 2013, 252(1):58-70.
doi: 10.1111/jmi.12071 URL |
[21] |
Powell RD, Halsey CM, Spector DL, et al. A covalent fluorescent-gold immunoprobe:simultaneous detection of a pre-mRNA splicing factor by light and electron microscopy[J]. J Histochem Cytochem, 1997, 45(7):947-956.
pmid: 9212820 |
[22] |
Robinson JM, Vandré DD. Efficient immunocytochemical labeling of leukocyte microtubules with FluoroNanogold:an important tool for correlative microscopy[J]. J Histochem Cytochem, 1997, 45(5):631-642.
pmid: 9154150 |
[23] |
Mironov AA, Beznoussenko GV. Correlative microscopy:a potent tool for the study of rare or unique cellular and tissue events[J]. J Microsc, 2009, 235(3):308-321.
doi: 10.1111/j.1365-2818.2009.03222.x URL |
[24] |
Chan WC. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281(5385):2016-2018.
pmid: 9748158 |
[25] |
Griffin BA, Adams SR, Tsien RY. Specific covalent labeling of recombinant protein molecules inside live cells[J]. Science, 1998, 281(5374):269-272.
pmid: 9657724 |
[26] |
Adams SR, Campbell RE, Gross LA, et al. New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo:synjournal and biological applications[J]. J Am Chem Soc, 2002, 124(21):6063-6076.
doi: 10.1021/ja017687n URL |
[27] | Gaietta GM, Deerinck TJ, Ellisman MH. Fluorescence photoconversion of biarsenical-labeled cells for correlated electron microscopy(EM)[J]. Cold Spring Harb Protoc, 2011, 2011(1):pdb. prot5548. |
[28] |
Boassa D, Berlanga ML, Yang MA, et al. Mapping the subcellular distribution of α-synuclein in neurons using genetically encoded probes for correlated light and electron microscopy:implications for Parkinson’s disease pathogenesis[J]. J Neurosci, 2013, 33(6):2605-2615.
doi: 10.1523/JNEUROSCI.2898-12.2013 URL |
[29] | Kobayashi S, Iwamoto M, Haraguchi T. Live correlative light-electron microscopy to observe molecular dynamics in high resolution[J]. Microscopy:Oxf, 2016, 65(4):296-308. |
[30] |
Shu X, Lev-Ram V, Deerinck TJ, et al. A genetically encoded tag for correlated light and electron microscopy of intact cells, tissues, and organisms[J]. PLoS Biol, 2011, 9(4):e1001041.
doi: 10.1371/journal.pbio.1001041 URL |
[31] |
Martell JD, Deerinck TJ, Sancak Y, et al. Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy[J]. Nat Biotechnol, 2012, 30(11):1143-1148.
doi: 10.1038/nbt.2375 URL |
[32] |
Ellisman MH, Deerinck TJ, Kim KY, et al. Advances in molecular probe-based labeling tools and their application to multiscale multimodal correlated microscopies[J]. J Chem Biol, 2015, 8(4):143-151.
doi: 10.1007/s12154-015-0132-6 URL |
[33] |
Grabenbauer M, Geerts WJ, Fernadez-Rodriguez J, et al. Correlative microscopy and electron tomography of GFP through photooxidation[J]. Nat Methods, 2005, 2(11):857-862.
pmid: 16278657 |
[34] |
Yang Z, Hu B, Zhang Y, et al. Development of a plastic embedding method for large-volume and fluorescent-protein-expressing tissues[J]. PLoS One, 2013, 8(4):e60877.
doi: 10.1371/journal.pone.0060877 URL |
[35] |
Marion J, Le Bars R, Satiat-Jeunemaitre B, et al. Optimizing CLEM protocols for plants cells:GMA embedding and cryosections as alternatives for preservation of GFP fluorescence in Arabidopsis roots[J]. J Struct Biol, 2017, 198(3):196-202.
doi: 10.1016/j.jsb.2017.03.008 URL |
[36] |
Clarke NI, Royle SJ. FerriTag is a new genetically-encoded inducible tag for correlative light-electron microscopy[J]. Nat Commun, 2018, 9:2604.
doi: 10.1038/s41467-018-04993-0 URL |
[37] | Paez-Segala MG, Sun MG, Shtengel G, et al. Fixation-resistant photoactivatable fluorescent proteins for CLEM[J]. Nat Methods, 2015, 12(3):215-8, 4 p following 218. |
[38] |
Fu Z, Peng D, Zhang M, et al. mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM[J]. Nat Methods, 2020, 17(1):55-58.
doi: 10.1038/s41592-019-0613-6 URL |
[39] |
VAN Hest JJHA, Agronskaia AV, Fokkema J, et al. Towards robust and versatile single nanoparticle fiducial markers for correlative light and electron microscopy[J]. J Microsc, 2019, 274(1):13-22.
doi: 10.1111/jmi.2019.274.issue-1 URL |
[40] |
Avinoam O, Schorb M, Beese CJ, et al. ENDOCYTOSIS. Endocytic sites mature by continuous bending and remodeling of the clathrin coat[J]. Science, 2015, 348(6241):1369-1372.
doi: 10.1126/science.aaa9555 pmid: 26089517 |
[41] | 胡西学, 郭宏博, 宫宁强, 等. 一种简单的光-电关联方法[J]. 电子显微学报, 2019, 38(4):403-407. |
Hu XX, Guo HB, Gong NQ, et al. A simple method of correlative light and electron microscopy[J]. J Chin Electron Microsc Soc, 2019, 38(4):403-407. | |
[42] |
Gudmundsson S, Kahlhofer J, Baylac N, et al. Correlative light and electron microscopy of autophagosomes[J]. Methods Mol Biol, 2019, 1880:199-209.
doi: 10.1007/978-1-4939-8873-0_12 pmid: 30610698 |
[43] | Oorschot VM, Sztal TE, Bryson-Richardson RJ, et al. Immuno correlative light and electron microscopy on Tokuyasu cryosections[J]. Methods Cell Biol, 2014, 124:241-258. |
[44] | Kanemaru T, Kondo T, Nakamura KI, et al. A simple preparation method for CLEM using pre-embedding immunohistochemistry with a novel fluorescent probe and stable embedding resin[J]. Microscopy:Oxf, doi(10. 1093):jmicro. |
[45] |
Johnson E, Seiradake E, Jones EY, et al. Correlative in-resin super-resolution and electron microscopy using standard fluorescent proteins[J]. Sci Rep, 2015, 5:9583.
doi: 10.1038/srep09583 pmid: 25823571 |
[46] |
Sun R, Chen X, Yin CY, et al. Correlative light and electron microscopy for complex cellular structures on PDMS substrates with coded micro-patterns[J]. Lab Chip, 2018, 18(24):3840-3848.
doi: 10.1039/C8LC00703A URL |
[47] |
van Driel LF, Valentijn JA, Valentijn KM, et al. Tools for correlative cryo-fluorescence microscopy and cryo-electron tomography applied to whole mitochondria in human endothelial cells[J]. Eur J Cell Biol, 2009, 88(11):669-684.
doi: 10.1016/j.ejcb.2009.07.002 URL |
[48] |
Patla I, Volberg T, Elad N, et al. Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography[J]. Nat Cell Biol, 2010, 12(9):909-915.
doi: 10.1038/ncb2095 URL |
[49] | Hoffman DP, Shtengel G, Xu CS, et al. Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells[J]. Science, 2020, 367(6475). |
[50] |
Bell K, Mitchell S, Paultre D, et al. Correlative imaging of fluorescent proteins in resin-embedded plant Material1[J]. Plant Physiol, 2013, 161(4):1595-1603.
doi: 10.1104/pp.112.212365 URL |
[51] |
Schroeder-Reiter E, Houben A, Grau J, et al. Characterization of a peg-like terminal NOR structure with light microscopy and high-resolution scanning electron microscopy[J]. Chromosoma, 2006, 115(1):50-59.
pmid: 16267675 |
[52] |
West M, Vaidya A, Singh AP. Correlative light and scanning electron microscopy of the same sections gives new insights into the effects of pectin lyase on bordered pit membranes in Pinus radiata wood[J]. Micron, 2012, 43(8):916-919.
doi: 10.1016/j.micron.2012.03.007 URL |
[53] | Hertle AP, Haberl B, Bock R. Horizontal genome transfer by cell-to-cell travel of whole organelles[J]. Sci Adv, 2021, 7(1):eabd8215. |
[54] |
Neumann P, Navrátilová A, Schroeder-Reiter E, et al. Stretching the rules:monocentric chromosomes with multiple centromere domains[J]. PLoS Genet, 2012, 8(6):e1002777.
doi: 10.1371/journal.pgen.1002777 URL |
[55] |
Pfeiffer S, Beese M, Boettcher M, et al. Combined use of confocal laser scanning microscopy and transmission electron microscopy for visualisation of identical cells processed by cryotechniques[J]. Protoplasma, 2003, 222(3/4):129-137.
doi: 10.1007/s00709-003-0014-6 URL |
[56] |
Rizzo NW, Duncan KE, Bourett TM, et al. Backscattered electron SEM imaging of resin sections from plant specimens:observation of histological to subcellular structure and CLEM[J]. J Microsc, 2016, 263(2):142-147.
doi: 10.1111/jmi.2016.263.issue-2 URL |
[57] |
Liu B, Xue Y, Zhao W, et al. Three-dimensional super-resolution protein localization correlated with vitrified cellular context[J]. Sci Rep, 2015, 5:13017.
doi: 10.1038/srep13017 URL |
[58] |
Watanabe S, Punge A, Hollopeter G, et al. Protein localization in electron micrographs using fluorescence nanoscopy[J]. Nat Methods, 2011, 8(1):80-84.
doi: 10.1038/nmeth.1537 pmid: 21102453 |
[59] |
Zhen Y, Spangenberg H, Munson MJ, et al. ESCRT-mediated phagophore sealing during mitophagy[J]. Autophagy, 2020, 16(5):826-841.
doi: 10.1080/15548627.2019.1639301 pmid: 31366282 |
[60] | Modla S, Caplan JL, Czymmek KJ, et al. Localization of fluorescently tagged protein to plasmodesmata by correlative light and electron microscopy[M]//Methods in Molecular Biology. New York, NY:Springer New York, 2014:121-133. |
[61] |
El-Kasmi F, Pacher T, Strompen G, et al. Arabidopsis SNARE protein SEC22 is essential for gametophyte development and maintenance of Golgi-stack integrity[J]. Plant J, 2011, 66(2):268-279.
doi: 10.1111/tpj.2011.66.issue-2 URL |
[62] |
Ganeva I, Kukulski W. Membrane architecture in the spotlight of correlative microscopy[J]. Trends Cell Biol, 2020, 30(7):577-587.
doi: S0962-8924(20)30074-X pmid: 32402740 |
[63] |
Kukulski W, Schorb M, Kaksonen M, et al. Plasma membrane reshaping during endocytosis is revealed by time-resolved electron tomography[J]. Cell, 2012, 150(3):508-520.
doi: 10.1016/j.cell.2012.05.046 pmid: 22863005 |
[64] | Franke C, Repnik U, Segeletz S, et al. Correlative SMLM and electron tomography reveals endosome nanoscale domains[J]. Traffic, 2019, 20(8). |
[65] | Wang P, Kang BH. Correlative light and electron microscopy imaging of the plant trans-Golgi network[J]. Methods Mol Biol, 2020, 2177:59-67. |
[66] |
马丹丹, 邓雨青, 周彦, 等. 电镜技术在植物病害研究中的应用[J]. 生物技术通报, 2016, 32(3):38-43.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.03.007 |
Ma DD, Deng YQ, Zhou Y, et al. Application of electron microscopy technology in the research of plant diseases[J]. Biotechnol Bull, 2016, 32(3):38-43. | |
[67] |
Ledford JH, Richardson PE. Light and scanning electron microscopy of greenbug aphid damage in wheat using the same section[J]. Biotech Histochem, 1994, 69(6):342-347.
pmid: 7703305 |
[68] | Lucas MS, Günthert M, Gasser P, et al. Bridging microscopes:3D correlative light and scanning electron microscopy of complex biological structures[J]. Methods Cell Biol, 2012, 111:325-356. |
[69] |
Caplan JL, Kumar AS, Park E, et al. Chloroplast stromules function during innate immunity[J]. Dev Cell, 2015, 34(1):45-57.
doi: 10.1016/j.devcel.2015.05.011 URL |
[70] |
Liu W, Huang LQ, Komorek R, et al. Correlative surface imaging reveals chemical signatures for bacterial hotspots on plant roots[J]. Analyst, 2020, 145(2):393-401.
doi: 10.1039/C9AN01954E URL |
[1] | 姜炎柯, 路冲冲, 尹梓屹, 李洋, 丁新华. 可变剪接在植物免疫中的研究进展[J]. 生物技术通报, 2022, 38(1): 215-227. |
[2] | 魏英, 罗萌, 戴良英, 彭德良, 刘敬. 植物寄生线虫钙网蛋白的研究进展[J]. 生物技术通报, 2021, 37(7): 81-87. |
[3] | 王立光, 叶春雷, 陈军, 朱天地, 李静雯. 植物Na+,K+/H+反向转运体:pH平衡与囊泡运输[J]. 生物技术通报, 2020, 36(4): 151-158. |
[4] | . 核酸及蛋白质合成、提取、纯化[J]. , 1992, 0(06): 32-34. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||