[1] 谢国生, 师瑞红, 曾汉来, 等. 植物细胞内pH稳态体系及其调控的新进展[C]. 2005海峡两岸植物生理与分子生物学教学研讨会论文集, 中国植物生理学会. 武汉:2005. [2] 赵彦坤, 张文胜, 王幼宁, 等. 高pH对植物生长发育的影响及其分子生物学研究进展[J]. 中国生态农业学报, 2008, 16(3):783-787. [3] 周文彬, 邱保胜. 植物细胞内pH值的测定[J]. 植物生理学通讯, 2004, 40(6):724-728. [4] Gjetting KS, Ytting CK, Schulz A, et al.Live imaging of intra- and extracellular pH in plants using pHusion, a novel genetically encoded biosensor[J]. J Exp Bot, 2012, 63(8):3207-3218. [5] Bibikova TN, Jacob T, Dahse I, et al.Localized changes in apoplastic and cytoplasmic pH are associated with root hair development in Arabidopsis thaliana[J]. Development, 1998, 125(15):2925-2934. [6] Monshausen GB, Miller ND, Murphy AS, et al.Dynamics of auxin-dependent Ca2+ and pH signaling in root growth revealed by integrating high-resolution imaging with automated computer vision-based analysis[J]. The Plant Journal, 2011, 65(2):309-318. [7] Barbez E, Dunser K, Gaidora A, et al.Auxin steers root cell expansion via apoplastic pH regulation in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2017, 114(24):E4884-E4893. [8] Andres Z, Perez-Hormaeche J, Leidi EO, et al.Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake[J]. Proc Natl Acad Sci USA, 2014, 111(17):E1806-E1814. [9] 柳参奎, 张欣欣, 程玉祥. “植物细胞内pH调控系统”是适应环境逆境的一个耐性机制?[J]. 分子植物育种, 2004, 2(2):179-186. [10] Gao D, Knight MR, Trewavas AJ, et al.Self-reporting Arabidopsis expressing pH and[Ca2+]indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress[J]. Plant Physiol, 2004, 134(3):898-908. [11] Geilfus CM.The pH of the apoplast:dynamic factor with functional impact under stress[J]. Mol Plant, 2017, 10(11):1371-1386. [12] 杨玉珍. 植物的pH值、等电点、细胞膜透性与抗氟化物的关系[J]. 河南农业大学学报, 1996, 30(4):66-68. [13] 胡开敏, 刘清臻. 树木叶片汁液的pH值及缓冲量与抗大气污染性能的初步研究[J]. 东北林学院学报, 1983, 11(4):71-77. [14] 杨玉珍. 植物受氟气物污染后糖代谢及叶汁PH值的变化研究[J]. 河南农业大学学报, 1995, 29(1):95-97. [15] Behera S, Xu ZL, Luoni L, et al.Cellular Ca2+ signals generate defined ph signatures in plants[J]. Plant Cell, 2018, 30(11):2704-2719. [16] Li W, Song T, Wallrad L, et al.Tissue-specific accumulation of pH-sensing phosphatidic acid determines plant stress tolerance[J]. Nat Plants, 2019, 5(9):1012-1021. [17] Westphal L, Strehmel N, Eschen-Lippold L, et al. pH effects on plant calcium fluxes:lessons from acidification-mediated calcium elevation induced by the gamma-glutamyl-leucine dipeptide identified from Phytophthora infestans[J]. Sci Rep, 2019, 9(1):4733(online). [18] 张程, 牛洋, 刘佳佳. 囊泡运输的功能与调控机制[J]. 中国细胞生物学学报, 2014, 36(9):1218-1226. [19] Robinson DG, Al E.Protein sorting to the storage vacuoles of plants:a critical appraisal[J]. Traffic, 2010, 6(8):615-625. [20] Zouhar J, Rojo E.Plant vacuoles:where did they come from and where are they heading?[J]. Current Opinion in Plant Biology, 2009, 12(6):677-684. [21] Cui Y, He Y, Cao W, et al.The multivesicular body and autophago-some pathways in plants[J]. Front Plant Sci, 2018, 9:1837. [22] Jürgens G.Membrane trafficking in plants[J]. Annu Rev Cell Dev Biol, 2004, 20:481-504. [23] Carter CJ, Bednarek SY, Raikhel NV.Membrane trafficking in plants:new discoveries and approaches[J]. Curr Opin Plant Biol, 2004, 7(6):701-707. [24] Geldner N.The plant endosomal system--its structure and role in signal transduction and plant development[J]. Planta, 2004, 219(4):547-560. [25] Ashnest JR, Gendall AR.Trafficking to the seed protein storage vacuole[J]. Functional Plant Biology, 2018, 45:895-910. [26] Baral A, Shruthi KS, Mathew MK.Vesicular trafficking and salinity responses in plants[J]. IUBMB Life, 2015, 67(9):677-686. [27] Blumwald E, Poole RJ.Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris[J]. Plant Physiol, 1985, 78(1):163-167. [28] Ratner A, Jacoby B.Effect of K+, its counter anion, and pH on sodium efflux from barley root tips[J]. Journal of Experimental Botany, 1976, 27(5):843-852. [29] Gaxiola RA, Rao R, Sherman A, et al.The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast[J]. Proc Natl Acad Sci USA. 1999, 96(4):1480-1485. [30] Blumwald E, Aharon GS, Apse MP.Sodium transport in plant cells[J]. Biochim Biophys Acta, 2000, 1465(1-2):140-151. [31] Schachtman D, Liu W.Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants[J]. Trends Plant Sci, 1999, 4(7):281-287. [32] Rausch T, Kirsch M, Löw R, et al.Salt stress responses of higher plants:The role of proton pumps and Na+/H+ -antiporters[J]. Journal of Plant Physiology, 1996, 148(3-4):425-433. [33] Bassil E, Coku A, Blumwald E.Cellular ion homeostasis:emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development[J]. J Exp Bot, 2012, 63(16):5727-5740. [34] Pardo JM, Cubero B, Leidi EO, et al.Alkali cation exchangers:roles in cellular homeostasis and stress tolerance[J]. J Exp Bot, 2006, 57(5):1181-1199. [35] Wang LG, Wu X, Liu Y, et al.AtNHX5 and AtNHX6 control cellular K+ and pH homeostasis in Arabidopsis:Three conserved acidic residues are essential for K+ transport[J]. PLoS One, 2015, 10(12):e144716. [36] Wu XX, Ebine K, Ueda T, et al.AtNHX5 and AtNHX6 are required for the subcellular localization of the SNARE complex that Mediates the trafficking of seed storage proteins in Arabidopsis[J]. 2016, 11(3):e151658. [37] Fan LG, Zhao L, Hu W, et al.NHX antiporters regulate the pH of endoplasmic reticulum and auxin-mediated development[J]. Plant Cell Environ, 2018, 41(4):850-864. [38] Dragwidge JM, Scholl S, Schumacher K, et al.NHX-type Na+ K+/H+ antiporters are required for TGN/EE trafficking and endosomal ion homeostasis in Arabidopsis[J]. J Cell Sci, 2019, 132(7):1-10. [39] Reguera M, Bassil E, Tajima H, et al.pH Regulation by NHX-type antiporters is required for receptor-mediated protein trafficking to the vacuole in Arabidopsis[J]. Plant Cell, 2015, 27(4):1200-1217. [40] 薛轶群, 宋凯, 范路生, 等. PH敏感型荧光蛋白及其在植物细胞生物学中的应用[J]. 植物学报, 2015, 50(3):394-404. [41] Martiniere A, Bassil E, Jublanc E, et al.In vivo intracellular pH measurements in tobacco and Arabidopsis reveal an unexpected pH gradient in the endomembrane system[J]. Plant Cell, 2013, 25(10):4028-4043. [42] Shen J, Zeng Y, Zhuang X, et al.Organelle pH in the Arabidopsis endomembrane system[J]. Mol Plant, 2013, 6(5):1419-1437. [43] Paroutis P, Touret N, Grinstein S.The pH of the secretory pathway:measurement, determinants, and regulation[J]. Physiology(Bethesda), 2004, 19:207-215. [44] Bassil E, Blumwald E.The ins and outs of intracellular ion homeostasis:NHX-type cation/H+ transporters[J]. Curr Opin Plant Biol, 2014, 22:1-6. [45] Bassil E, Tajima H, Liang YC, et al.The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction[J]. Plant Cell, 2011, 23(9):3482-3497. [46] Brett CL, Tukaye DN, Mukherjee S, et al.The yeast endosomal Na+ K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking[J]. Mol Biol Cell, 2005, 16(3):1396-1405. [47] Mitsui K, Koshimura Y, Yoshikawa Y, et al.The endosomal Na+/H+ exchanger contributes to multivesicular body formation by regulating the recruitment of ESCRT-0 Vps27p to the endosomal membrane[J]. J Biol Chem, 2011, 286(43):37625-37638. [48] Shabala L, Cuin TA, Newman IA, et al.Salinity-induced ion flux patterns from the excised roots of Arabidopsis sos mutants[J]. Planta, 2005, 222(6):1041-1050. [49] Oh DH, Lee SY, Bressan RA, et al.Intracellular consequences of SOS1 deficiency during salt stress[J]. J Exp Bot, 2010, 61(4):1205-1213. [50] Oh DH, Ali Z, Hyeong CP, et al.Consequences of SOS1 deficiency:Intracellular physiology and transcription[J]. Plant Signaling & Behavior, 2010, 5(6):766-768. [51] Yamaguchi T, Fukada-Tanaka S, Inagaki Y, et al.Genes encoding the vacuolar Na+/H+ exchanger and flower coloration[J]. Plant Cell Physiol, 2001, 42(5):451-461. [52] Yoshida K, Kawachi M, Mori M, et al.The involvement of tonoplast proton pumps and Na+(K+)/H+ exchangers in the change of petal color during flower opening of Morning Glory, Ipomoea tricolor cv. Heavenly Blue[J]. Plant Cell Physiol, 2005, 46(3):407-415. [53] Yoshida K, Miki N, Momonoi K, et al.Synchrony between flower opening and petal-color change from red to blue in morning glory, Ipomoea tricolor cv. Heavenly Blue[J]. Proc Jpn Acad Ser B Phys Biol Sci, 2009, 85(6):187-197. [54] Bassil E, Zhang S, Gong H, et al.Cation specificity of vacuolar NHX-type cation/H+ antiporters[J]. Plant Physiol, 2019, 179(2):616-629. [55] Chen X, Bao H, Guo J, et al.Na+/H+ exchanger 1 participates in tobacco disease defence against Phytophthora parasitica var. nicotianae by affecting vacuolar pH and priming the antioxidative system[J]. J Exp Bot, 2014, 65(20):6107-6122. [56] Casey JR, Grinstein S, Orlowski J.Sensors and regulators of intracellular pH[J]. Nat Rev Mol Cell Biol, 2010, 11(1):50-61. [57] Ohgaki R, Van ISC, Matsushita M, et al.Organellar Na+/H+ exchangers:novel players in organelle pH regulation and their emerging functions[J]. Biochemistry, 2011, 50(4):443-450. [58] Orlowski J, Grinstein S.Na+/H+ exchangers[J]. Compr Physiol. 2011, 1(4):2083-2100. [59] Bowers K, Levi BP, Patel FI, et al.The sodium/proton exchanger Nhx1p is required for endosomal protein trafficking in the yeast Saccharomyces cerevisiae[J]. Mol Biol Cell, 2000, 11(12):4277-4294. [60] Qiu QS, Fratti RA.The Na+/H+ exchanger Nhx1p regulates the initiation of Saccharomyces cerevisiae vacuole fusion[J]. J Cell Sci, 2010, 123(Pt 19):3266-3275. [61] Kallay LM, Brett CL, Tukaye DN, et al.Endosomal Na+(K+)/H+ exchanger Nhx1/Vps44 functions independently and downstream of multivesicular body formation[J]. J Biol Chem, 2013, 286(51):44067-44077. [62] Lawrence SP, Bright NA, Luzio JP, et al.The sodium/proton exchanger NHE8 regulates late endosomal morphology and function[J]. Molecular Biology of the Cell, 2010, 21(20):3540-3551. [63] Ohgaki R, Matsushita M, Kanazawa H, et al.The Na+/H+ exchanger NHE6 in the endosomal recycling system is involved in the development of apical bile canalicular surface domains in HepG2 cells[J]. Molecular Biology of the Cell, 2010, 21(7):1293-1304. [64] Sottosanto JB, Saranga Y, Blumwald E.Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana[J]. BMC Plant Biol, 2007, 7:18. [65] Sottosanto JB, Gelli A, Blumwald E.DNA array analyses of Arabidopsis thaliana lacking a vacuolar Na+/H+ antiporter:impact of AtNHX1 on gene expression[J]. Plant J, 2004, 40(5):752-771. [66] Hamaji K, Nagira M, Yoshida K, et al.Dynamic aspects of ion acc-umulation by vesicle traffic under salt stress in Arabidopsis[J]. Plant Cell Physiol, 2009, 50(12):2023-2033. [67] Bassil E, Ohto MA, Esumi T, et al.The Arabidopsis intracellular Na+/H+ antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development[J]. Plant Cell, 2011, 23(1):224-239. [68] Ashnest JR, Huynh DL, Dragwidge JM, et al.Arabidopsis intracellular NHX-Type sodium-proton antiporters are required for seed storage protein processing[J]. Plant Cell Physiol, 2015, 56(11):2220-2233. [69] 邱全胜. 拟南芥NHX5和NHX6:离子平衡与蛋白质运输[J]. 中国科学:生命科学, 2017, 47(8):839-846. [70] 王立光. 拟南芥内膜Na+, K+/H+反向转运体研究进展[J]. 生物工程学报, 2019, 35(8):1424-1432. |