生物技术通报 ›› 2022, Vol. 38 ›› Issue (12): 274-286.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0281
收稿日期:
2022-03-06
出版日期:
2022-12-26
发布日期:
2022-12-29
作者简介:
李思思,女,硕士研究生,研究方向:环境微生物学;E-mail:基金资助:
LI Si-si(), ZHANG Bo-yuan, FU Yun-hui, ZHOU Jia, QU Jian-hang()
Received:
2022-03-06
Published:
2022-12-26
Online:
2022-12-29
摘要:
探究一株自湖泊沉积物中分离到的高效溶磷菌株1616X1的溶磷条件和特性。通过菌落形态、生理生化特性及16S rRNA基因序列分析进行菌种分类鉴定,采用钼锑抗比色法测定溶磷量,利用单因素和响应面试验对溶磷条件进行优化,土壤溶磷试验观察土壤中速效磷含量变化以及菌株1616X1在土壤中的定殖效果。菌株1616X1为Pseudomonas sp.;在NBRIP液体培养基中溶磷量与pH呈显著负相关,最佳溶磷条件为葡萄糖10 g/L、硫酸铵0.17 g/L、pH 5.70、接种量5%、装液量75 mL/250 mL,培养温度23.3℃,该条件下溶磷量为684.91 mg/L;1616X1在实验所用菜地以及花圃土壤中均能有效定殖且能显著增加土壤速效磷含量。菌株1616X1具有较好的溶磷能力,有望为开发溶磷微生物肥料提供优质菌种资源,为该溶磷菌的合理应用提供理论依据。
李思思, 张博源, 符运会, 周佳, 屈建航. 一株高效溶磷细菌的条件优化及其溶磷特性研究[J]. 生物技术通报, 2022, 38(12): 274-286.
LI Si-si, ZHANG Bo-yuan, FU Yun-hui, ZHOU Jia, QU Jian-hang. Condition Optimization of an Efficient Phosphate-dissolving Bacterial Strain and Its Phosphate-dissolving Characteristics[J]. Biotechnology Bulletin, 2022, 38(12): 274-286.
水平 Level | 因素Factor | |||
---|---|---|---|---|
A(硫酸铵Ammonium sulfate)/(g·L-1) | B(温度Temperature)/℃ | C(pH) | ||
-1 | 0.05 | 20 | 5 | |
0 | 0.10 | 24 | 6 | |
1 | 0.15 | 28 | 7 |
表1 响应面试验的因素及水平
Table 1 Factors and levels of response surface experiment
水平 Level | 因素Factor | |||
---|---|---|---|---|
A(硫酸铵Ammonium sulfate)/(g·L-1) | B(温度Temperature)/℃ | C(pH) | ||
-1 | 0.05 | 20 | 5 | |
0 | 0.10 | 24 | 6 | |
1 | 0.15 | 28 | 7 |
图1 菌株1616X1基于16S rRNA基因序列的系统发育树 Bootstrap次数设置为1 000,邻接法构建系统发育树;分支位置中的数字表示Bootstrap值;括号中为相关细菌的GenBank登录号;标尺为进化距离
Fig. 1 Phylogenetic tree of strain 1616X1 based on 16S rRNA sequences The Bootstrap times were set to 1 000,and the phylogenetic tree was constructed by adjacency method. The numbers at the branch nodes are the Bootstrap values. In parentheses is the accession number of 16S rRNA gene sequence of the strain in Genbank. The data of the ruler is the evolutionary distance
来源Source | 自由度Freedom | 平方和Sum of squares | 均方Mean square | F值F value | P值P value | 显著性Significance |
---|---|---|---|---|---|---|
碳源浓度Carbon source concentration | 5 | 908119.44 | 181623.88 | 3307.15 | 0.000 | ** |
氮源浓度Nitrogen source concentration | 5 | 112287.61 | 22457.52 | 98.18 | 0.000 | ** |
温度 Temperature | 4 | 94456.32 | 23614.08 | 287.36 | 0.000 | ** |
接种量 Inoculum quantity | 4 | 6210.98 | 1552.74 | 4.74 | 0.0210 | * |
装液量 Loaded liquid | 4 | 1123.59 | 280.89 | 1.78 | 0.2090 | - |
pH | 5 | 23076.69 | 4615.33 | 86.42 | 0.000 | ** |
表2 方差分析
Table 2 Analysis of variance
来源Source | 自由度Freedom | 平方和Sum of squares | 均方Mean square | F值F value | P值P value | 显著性Significance |
---|---|---|---|---|---|---|
碳源浓度Carbon source concentration | 5 | 908119.44 | 181623.88 | 3307.15 | 0.000 | ** |
氮源浓度Nitrogen source concentration | 5 | 112287.61 | 22457.52 | 98.18 | 0.000 | ** |
温度 Temperature | 4 | 94456.32 | 23614.08 | 287.36 | 0.000 | ** |
接种量 Inoculum quantity | 4 | 6210.98 | 1552.74 | 4.74 | 0.0210 | * |
装液量 Loaded liquid | 4 | 1123.59 | 280.89 | 1.78 | 0.2090 | - |
pH | 5 | 23076.69 | 4615.33 | 86.42 | 0.000 | ** |
序号Number | A:硫酸铵Ammonium sulfate/(g·L-1) | B:pH | C:温度Temperature/℃ | 溶磷量Amount of dissolved phosphorus/(mg·L-1) |
---|---|---|---|---|
1 | -1 | -1 | 0 | 537.63 |
2 | 1 | -1 | 0 | 652.85 |
3 | -1 | 1 | 0 | 587.73 |
4 | 1 | 1 | 0 | 618.79 |
5 | -1 | 0 | -1 | 514.59 |
6 | 1 | 0 | -1 | 645.84 |
7 | -1 | 0 | 1 | 573.70 |
8 | 1 | 0 | 1 | 621.79 |
9 | 0 | -1 | -1 | 654.86 |
10 | 0 | 1 | -1 | 660.87 |
11 | 0 | -1 | 1 | 630.81 |
12 | 0 | 1 | 1 | 643.84 |
13 | 0 | 0 | 0 | 667.88 |
14 | 0 | 0 | 0 | 685.92 |
15 | 0 | 0 | 0 | 686.92 |
16 | 0 | 0 | 0 | 653.86 |
17 | 0 | 0 | 0 | 676.90 |
表3 Box-Behnken试验设计与结果
Table 3 Box-Behnken experiment design and results
序号Number | A:硫酸铵Ammonium sulfate/(g·L-1) | B:pH | C:温度Temperature/℃ | 溶磷量Amount of dissolved phosphorus/(mg·L-1) |
---|---|---|---|---|
1 | -1 | -1 | 0 | 537.63 |
2 | 1 | -1 | 0 | 652.85 |
3 | -1 | 1 | 0 | 587.73 |
4 | 1 | 1 | 0 | 618.79 |
5 | -1 | 0 | -1 | 514.59 |
6 | 1 | 0 | -1 | 645.84 |
7 | -1 | 0 | 1 | 573.70 |
8 | 1 | 0 | 1 | 621.79 |
9 | 0 | -1 | -1 | 654.86 |
10 | 0 | 1 | -1 | 660.87 |
11 | 0 | -1 | 1 | 630.81 |
12 | 0 | 1 | 1 | 643.84 |
13 | 0 | 0 | 0 | 667.88 |
14 | 0 | 0 | 0 | 685.92 |
15 | 0 | 0 | 0 | 686.92 |
16 | 0 | 0 | 0 | 653.86 |
17 | 0 | 0 | 0 | 676.90 |
方差来源Source | 平方和Sum of squares | 自由度Freedom | 均方Mean square | F值F value | P值P value | 显著性Significance |
---|---|---|---|---|---|---|
回归模型 Regression model | 38483.42 | 9 | 4275.94 | 18.45 | 0.0004 | ** |
A | 13253.97 | 1 | 13253.97 | 57.18 | 0.0001 | ** |
B | 153.71 | 1 | 153.71 | 0.6631 | 0.4423 | |
C | 4.52 | 1 | 4.52 | 0.0195 | 0.8929 | |
AB | 1770.79 | 1 | 1770.79 | 7.64 | 0.0279 | * |
AC | 1728.88 | 1 | 1728.88 | 7.46 | 0.0293 | * |
BC | 12.30 | 1 | 12.30 | 0.0530 | 0.8244 | |
A2 | 18804.31 | 1 | 18804.31 | 81.12 | <0.0001 | ** |
B2 | 284.21 | 1 | 284.21 | 1.23 | 0.3048 | |
C2 | 1438.79 | 1 | 1438.79 | 6.21 | 0.0415 | * |
残差 Residuals | 1622.68 | 7 | 231.81 | |||
失拟项 Lack of fit | 862.56 | 3 | 287.52 | 1.51 | 0.3401 | |
纯误差 Pure error | 760.12 | 4 | 190.03 | |||
合计 Total | 40106.09 | 16 |
表4 二次模拟的方差分析
Table 4 Analysis of variance in quadratic model
方差来源Source | 平方和Sum of squares | 自由度Freedom | 均方Mean square | F值F value | P值P value | 显著性Significance |
---|---|---|---|---|---|---|
回归模型 Regression model | 38483.42 | 9 | 4275.94 | 18.45 | 0.0004 | ** |
A | 13253.97 | 1 | 13253.97 | 57.18 | 0.0001 | ** |
B | 153.71 | 1 | 153.71 | 0.6631 | 0.4423 | |
C | 4.52 | 1 | 4.52 | 0.0195 | 0.8929 | |
AB | 1770.79 | 1 | 1770.79 | 7.64 | 0.0279 | * |
AC | 1728.88 | 1 | 1728.88 | 7.46 | 0.0293 | * |
BC | 12.30 | 1 | 12.30 | 0.0530 | 0.8244 | |
A2 | 18804.31 | 1 | 18804.31 | 81.12 | <0.0001 | ** |
B2 | 284.21 | 1 | 284.21 | 1.23 | 0.3048 | |
C2 | 1438.79 | 1 | 1438.79 | 6.21 | 0.0415 | * |
残差 Residuals | 1622.68 | 7 | 231.81 | |||
失拟项 Lack of fit | 862.56 | 3 | 287.52 | 1.51 | 0.3401 | |
纯误差 Pure error | 760.12 | 4 | 190.03 | |||
合计 Total | 40106.09 | 16 |
图9 各因素间对菌株1616X1溶磷能力影响的响应曲面与等高线 a:硫酸铵浓度与pH的响应面与等高线;b:硫酸铵浓度与温度的响应面与等高线;c:pH与温度的响应面与等高线
Fig. 9 Contour and response surface about the effects of two factors on the ability of strain 1616X1 dissolving phosphate a:The response surface and contour of ammonium sulfate concentration and pH;b:the response surface and contour of ammonium sulfate concentration and temperature;c:the response surface and contour of pH and temperature.
[1] | 柯春亮, 陈宇丰, 周登博, 等. 香蕉根际土壤解磷细菌的筛选、鉴定及解磷能力[J]. 微生物学通报, 2015, 42(6):1032-1042. |
Ke CL, Chen YF, Zhou DB, et al. Isolation, identification and phosphate solubilization analysis of phosphate-solubilizing bacteria derived from banana rhizosphere soil[J]. Microbiol China, 2015, 42(6):1032-1042. | |
[2] | 庄馥璐, 柴小粉, 高蓓蓓, 等. 苹果根际解磷菌的分离筛选及解磷能力[J]. 中国农业大学学报, 2020, 25(7):69-79. |
Zhuang FL, Chai XF, Gao BB, et al. Isolation and screening of phosphorus-solubilizing bacteria in apple rhizosphere[J]. J China Agric Univ, 2020, 25(7):69-79. | |
[3] |
孟玉, 陶刚, 黄德棋, 等. 溶磷真菌的多样性及其在农业与生态中的应用[J]. 中国农业科技导报, 2022, 24(11), 208-217.
doi: 10.13304/j.nykjdb.2021.0718 |
Meng Y, Tao G, Huang DQ, et al. Diversity of phosphate-solubilizing fungi and their applications in agriculture and ecology[J]. J Agric Sci Technol, 2022, 24(11), 208-217. | |
[4] | 赵君, 饶惠玲, 王耘籽, 等. 红壤区杉木根际高效解磷菌的筛选、鉴定及培养条件优化[J]. 厦门大学学报:自然科学版, 2022, 61(1):112-121. |
Zhao J, Rao HL, Wang YZ, et al. Screening, identification and optimization of culture conditions of two high-efficiency phosphorus-solubilizing bacteria in the rhizosphere of Cunninghamia lanceolata in red soil areas[J]. J Xiamen Univ Nat Sci, 2022, 61(1):112-121. | |
[5] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
Bao SD. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: Chinese Agriculture Press, 2000. | |
[6] |
银婷婷, 王敬敬, 柳影, 等. 高效解磷菌的筛选及其促生机制的初步研究[J]. 生物技术通报, 2015, 31(12):234-242.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.034 URL |
Yin TT, Wang JJ, Liu Y, et al. The screening of efficient phosphorus-solubilizing bacteria and the primary study on its mechanism of plant-growth-promoting[J]. Biotechnol Bull, 2015, 31(12):234-242.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.034 URL |
|
[7] | 李东坡, 武志杰. 化学肥料的土壤生态环境效应[J]. 应用生态学报, 2008, 19(5):1158-1165. |
Li DP, Wu ZJ. Impact of chemical fertilizers application on soil ecological environment[J]. Chin J Appl Ecol, 2008, 19(5):1158-1165. | |
[8] | 宋以玲, 于建, 陈士更, 等. 化肥减量配施生物有机肥对油菜生长及土壤微生物和酶活性影响[J]. 水土保持学报, 2018, 32(1):352-360. |
Song YL, Yu J, Chen SG, et al. Effects of reduced chemical fertilizer with application of bio-organic fertilizer on rape growth, microorganism and enzymes activities in soil[J]. J Soil Water Conserv, 2018, 32(1):352-360. | |
[9] | 郎明. 长期施用磷肥土壤微生物的群落结构特征及适应性探究[D]. 北京: 中国农业大学, 2018. |
Lang M. Community structure and adaptation of soil microbiome after long-term phosphorus fertilization[D]. Beijing: China Agricultural University, 2018. | |
[10] |
do Carmo TS, Moreira FS, Cabral BV, et al. Phosphorus recovery from phosphate rocks using phosphate-solubilizing bacteria[J]. Geomicrobiol J, 2019, 36(3):195-203.
doi: 10.1080/01490451.2018.1534901 URL |
[11] | 江红梅, 殷中伟, 史发超, 等. 一株耐盐日本曲霉的筛选及其溶磷促生作用[J]. 微生物学报, 2018, 58(5):862-881. |
Jiang HM, Yin ZW, Shi FC, et al. Isolation, identification of a salt-tolerant, phosphate-solubilizing and crop-growth promoting Aspergillus japonicus[J]. Acta Microbiol Sin, 2018, 58(5):862-881. | |
[12] |
孙冉, 张素, 吴臣林, 等. 黑曲霉解磷能力的影响因素及培养条件优化[J]. 应用生态学报, 2020, 31(6):1963-1970.
doi: 10.13287/j.1001-9332.202006.033 |
Sun R, Zhang S, Wu CL, et al. Influencing factors of phosphate solubilizing capacity of Aspergillus niger and optimization of its culture condition[J]. Chin J Appl Ecol, 2020, 31(6):1963-1970. | |
[13] |
李豆豆, 尚双华, 韩巍, 等. 一株高效解磷真菌新菌株的筛选鉴定及解磷特性[J]. 应用生态学报, 2019, 30(7):2384-2392.
doi: 10.13287/j.1001-9332.201907.033 |
Li DD, Shang SH, Han W, et al. Screening, identification, and phosphate solubilizing characteristics of a new efficient phosphate solubilizing fungus[J]. Chin J Appl Ecol, 2019, 30(7):2384-2392. | |
[14] |
Hamdali H, Hafidi M, Virolle MJ, et al. Rock phosphate-solubilizing Actinomycetes:screening for plant growth-promoting activities[J]. World J Microbiol Biotechnol, 2008, 24(11):2565-2575.
doi: 10.1007/s11274-008-9817-0 URL |
[15] | 胡珊, 梁卫驱, 黄皓, 等. 中药渣堆肥中解磷细菌的筛选、鉴定及其拮抗作用[J]. 生物技术通报, 2022, 38(3):92-102. |
Hu S, Liang WQ, Huang H, et al. Screening, identification and antagonism of phosphate-solubilizing bacteria from the compost Chinese medicinal herbal residues[J]. Biotechnol Bull, 2022, 38(3):92-102. | |
[16] | 朱梦卓, 孙洋洋, 赵晓妍, 等. 野大豆内生假单胞菌YDX26的鉴定及促生抗逆特性[J]. 微生物学通报, 2021, 48(11):4100-4110. |
Zhu MZ, Sun YY, Zhao XY, et al. Identification of endophytic Pseudomonas sp. YDX26 in Glycine soja and its growth-promoting and stress-resistant characteristics[J]. Microbiol China, 2021, 48(11):4100-4110. | |
[17] | 沈佳佳, 侯小改, 王二强, 等. 油用牡丹根际解有机磷细菌的筛选及解磷功能研究[J]. 生物技术通报, 2022, 38(6): 157-165. |
Shen JJ, Hou XG, Wang EQ et al. Study of organic phosphate-solubilizing bacteria screening and phosphate-solubilizing capability in the rhizosphere of Paeonia ostia[J]. Biotechnol Bull, 2022, 38(6): 157-165. | |
[18] | 赵卫松, 郭庆港, 于稳欠, 等. 解淀粉芽胞杆菌PHODB35的溶磷特性及其对番茄的促生作用[J]. 微生物学报, 2020, 60(7):1370-1383. |
Zhao WS, Guo QG, Yu WQ, et al. Phosphate-solubilizing characteristics of Bacillus amyloliquefaciens PHODB35 and its growth-promoting effect on tomato[J]. Acta Microbiol Sin, 2020, 60(7):1370-1383. | |
[19] | 许光辉, 郑洪元. 土壤微生物分析方法手册[M]. 北京: 农业出版社, 1986. |
Xu GH, Zheng HY. Manual of Soil Microbial Analysis Methods[M]. Beijing: China Agriculture Press, 1986:246-248. | |
[20] | RE布坎南, NE吉本斯. 伯杰细菌鉴定手册[M]. 8版. 北京:科学出版社, 1984:274-312, 382- 389, 604- 606. |
Buchanan RE, Gibbons NE. Bergey’s manual of determinative bacteriology[M]. 8th edition. Beijing: Science Press, 1984. | |
[21] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001:370-398. |
Dong XZ, Cai MY. Common bacterial system identification manual[M]. Beijing: Science Press, 2001:370-398. | |
[22] | Moreno C, Romero J, Espejo RT. Polymorphism in repeated 16S rRNA genes is a common property of type strains and environmental isolates of the genus Vibrio[J]. Microbiology(Reading), 2002, 148(Pt 4):1233-1239. |
[23] | 于淼, 吴红艳, 冯健, 等. 解磷菌623-3的鉴定、培养条件优化及应用[J]. 四川农业大学学报, 2020, 38(5):572-579. |
Yu M, Wu HY, Feng J, et al. Identification, optimization of culture conditions and application of dephosphorizing bacteria 623-3[J]. J Sichuan Agric Univ, 2020, 38(5):572-579. | |
[24] | 胡山, 牛世全, 龙洋, 等. 河西走廊盐碱土壤中一株高效溶磷菌的鉴定及条件优化[J]. 微生物学通报, 2017, 44(2):358-365. |
Hu S, Niu SQ, Long Y, et al. Identification of an efficient phosphorus solubilizing bacteria from saline-alkali soil in the Hexi Corridor and optimization of its condition[J]. Microbiol China, 2017, 44(2):358-365. | |
[25] | 韦宜慧, 陈嘉琪, 董玉红, 等. 杉木人工林土壤溶磷细菌筛选及培养条件优化[J]. 林业科学研究, 2020, 33(4):83-91. |
Wei YH, Chen JQ, Dong YH, et al. Screening phosphorus-solubilizing bacteria from Chinese fir plantation soil and optimizing its culture conditions[J]. For Res, 2020, 33(4):83-91. | |
[26] |
韩蕾, 杨乐, 唐金铭, 等. 解磷菌发酵及溶磷条件的研究[J]. 生物技术通报, 2019, 35(1):98-104.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0733 URL |
Han L, Yang L, Tang JM, et al. Fermentation condition and phosphate-dissolving capacity of phosphate-solubilizing bacterium[J]. Biotechnol Bull, 2019, 35(1):98-104.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0733 URL |
|
[27] | 宫安东, 朱梓钰, 路亚南, 等. 吡咯伯克霍尔德菌WY6-5的溶磷、抑菌与促玉米生长作用研究[J]. 中国农业科学, 2019, 52(9):1574-1586. |
Gong AD, Zhu ZY, Lu YN, et al. Functional analysis of Burkholderia pyrrocinia WY6-5 on phosphate solubilizing, antifungal and growth-promoting activity of maize[J]. Sci Agric Sin, 2019, 52(9):1574-1586. | |
[28] | 虞伟斌, 杨兴明, 沈其荣, 等. K3解磷菌的解磷机理及其对缓冲容量的响应[J]. 植物营养与肥料学报, 2010, 16(2):354-361. |
Yu WB, Yang XM, Shen QR, et al. Mechanism on phosphate solubilization of Pseudomonas sp. K3 and its phosphate solubilization ability under buffering condition[J]. Plant Nutr Fertil Sci, 2010, 16(2):354-361. | |
[29] | 何迪, 耿丽平, 郭佳, 等. 草酸青霉菌HB1溶磷能力及作用机制[J]. 农业工程学报, 2020, 36(2):255-265. |
He D, Geng LP, Guo J, et al. Ability and mechanism of Penicillium oxalicum HB1 solubilizing phosphates[J]. Trans Chin Soc Agric Eng, 2020, 36(2):255-265. | |
[30] |
刘雪红, 张丽燕, 范延辉, 等. 沾化冬枣根际解无机磷细菌的分离、鉴定及其在土壤中溶磷效果的研究[J]. 华北农学报, 2013, 28(3):204-209.
doi: 10.3969/j.issn.1000-7091.2013.03.037 |
Liu XH, Zhang LY, Fan YH, et al. Isolation, identification and promoting effect of phosphate-solubilizing bacteria in rhizosphere of Zhanhua winter jujube[J]. Acta Agric Boreali Sin, 2013, 28 | |
3):204-209. | |
[31] | 龚明波, 范丙全, 王洪媛. 一株新的溶磷棘孢青霉菌Z32的分离、鉴定及其土壤定殖与溶磷特性[J]. 微生物学报, 2010, 50(5):580-585. |
Gong MB, Fan BQ, Wang HY. Isolation and identification of a novel phosphate-dissolving strain Penicillium aculeatum Z32 and its colonization and phosphate-dissolving characteristics in soil[J]. Acta Microbiol Sin, 2010, 50(5):580-585. | |
[32] | 林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010. |
Lin XG. Principles and methods of soil microbiology research[M]. Beijing: Higher Education Press, 2010. | |
[33] | 高惠璇等编译. SAS系统Base SAS软件使用手册[M]. 北京: 中国统计出版社, 1997. |
Gao HX, et al compiling. SAS system Base SAS software usage manual[M]. Beijing: China Statistics Press, 1997. | |
[34] |
Yu HT, Nie C, Zhou YN, et al. Suicides in China from 2008-2017:a longitudinal epidemological study[J]. Int J Crit Illn Inj Sci, 2020, 10(2):88-91.
doi: 10.4103/IJCIIS.IJCIIS_108_19 URL |
[35] |
Fahimitabar A, Razavian SMH, Rezaei SA. Application of RSM for optimization of glutamic acid production by Corynebacterium glutamicum in bath culture[J]. Heliyon, 2021, 7(6):e07359.
doi: 10.1016/j.heliyon.2021.e07359 URL |
[36] | 戴沈艳, 申卫收, 贺云举, 等. 一株高效解磷细菌的筛选及其在红壤性水稻土中的施用效果[J]. 应用与环境生物学报, 2011, 17(5):678-683. |
Dai SY, Shen WS, He YJ, et al. Screening of efficient phosphate-solubilizing bacterial strain and its application in red paddy soil to rice cultivation[J]. Chin J Appl Environ Biol, 2011, 17(5):678-683. | |
[37] | 李文, 戴玲, 王陶, 等. 不动杆菌JL-1菌株的解磷机理[J]. 微生物学通报, 2020, 47(5):1377-1387. |
Li W, Dai L, Wang T, et al. Research on phosphate solubilization by Acinetobacter Indicus JL-1[J]. Microbiol China, 2020, 47(5):1377-1387. | |
[38] | 杜雷, 王素萍, 陈钢, 等. 一株高效解磷细菌的筛选、鉴定及其溶磷能力的研究[J]. 中国土壤与肥料, 2017(3):136-141. |
Du L, Wang SP, Chen G, et al. Isolation and identidication of efficient phosphate-solubilizing bacterial strain and its phosphate-solubilizing capacity[J]. Soil Fertil Sci China, 2017(3):136-141. | |
[39] | 王聪, 凌娟, 张燕英, 等. 海洋固氮菌和解磷菌的分离鉴定及发酵条件优化[J]. 微生物学报, 2018, 58(5):817-829. |
Wang C, Ling J, Zhang YY, et al. Isolation, characterization and culture optimization of nitrogen-fixing and phosphate-solubilizing bacteria from rhizosphere sediments of Halophila ovalis[J]. Acta Microbiol Sin, 2018, 58(5):817-829. | |
[40] | 陈言柳, 郭春兰, 吴斐, 等. 油茶根际高效解磷细菌NC285液体发酵培养条件的优化[J]. 江西农业大学学报, 2019, 41(3):521-528. |
Chen YL, Guo CL, Wu F, et al. Optimization of liquid fermentation conditions for efficient phosphate solubilizing bacteria NC285 in Camellia oleifera rhizosphere[J]. Acta Agric Univ Jiangxiensis, 2019, 41(3):521-528. | |
[41] |
陈容彬, 左振宇, 黄博慧, 等. 一株伯克霍尔德菌的筛选鉴定及其溶磷性能优化[J/OL]. 应用生态学报, 2022. DOI:10.13287/j.1001-9332.202206.031.
doi: 10.13287/j.1001-9332.202206.031 URL |
Chen RB, Zuo ZY, Huang BH, et al. Screening and identification of a Burkholderia strain and optimization of its phosphate solubilizing capacity[J/OL]. Chin J Appl Ecol, 2022. DOI:10.13287/j.1001-9332.202206.031.
doi: 10.13287/j.1001-9332.202206.031 URL |
[1] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[2] | 谢东, 汪流伟, 李宁健, 李泽霖, 徐子航, 张庆华. 一株多功能菌株的发掘、鉴定及解磷条件优化[J]. 生物技术通报, 2023, 39(7): 241-253. |
[3] | 袁野, 周佳, 屈建航, 张博源, 罗宇, 李海峰. 高效反硝化聚磷菌的筛选及其脱氮除磷条件和性能研究[J]. 生物技术通报, 2023, 39(7): 266-276. |
[4] | 徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285. |
[5] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[6] | 王帅, 吕鸿睿, 张昊, 吴占文, 肖翠红, 孙冬梅. 解磷菌PSB-R全基因组测序鉴定及其解磷特性分析[J]. 生物技术通报, 2023, 39(1): 274-283. |
[7] | 王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229. |
[8] | 高亚慧, 姜明国, 丰景, 周桂. 产生促生挥发性物质的潜在PGPR菌株筛选及其促生特性研究[J]. 生物技术通报, 2022, 38(3): 103-112. |
[9] | 刘雪丹, 杨萌, 张静, 赵东旭. 葡萄糖-木糖共利用对重组大肠杆菌合成D-1,2,4-丁三醇的影响[J]. 生物技术通报, 2021, 37(9): 171-179. |
[10] | 段绪果, 张玉华, 黄婷婷, 丁乾, 栾舒越, 朱秋雨. 化学分子伴侣及诱导条件协同强化Thermotoga maritima α-葡聚糖磷酸化酶可溶性表达[J]. 生物技术通报, 2021, 37(8): 233-242. |
[11] | 张秀民, 马绍英, 杨洁, 包金玉, 张晓玲, 田鹏, 路亚琦, 李胜. 以次生代谢物产量为目标的西兰花毛状根培养技术体系优化[J]. 生物技术通报, 2021, 37(8): 75-84. |
[12] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[13] | 周静, 黄文茂, 秦利军, 韩丽珍. 四株PGPR菌株混菌发酵体系的构建及促生效应评价[J]. 生物技术通报, 2021, 37(4): 116-126. |
[14] | 魏畅, 戚秀秀, 吴越, 刘晓丹, 王祎, 姜瑛, 柳海涛. 砂质潮土高效溶磷菌的筛选鉴定、条件优化及应用[J]. 生物技术通报, 2021, 37(4): 85-95. |
[15] | 张美君, 吴庆, 尹翠, 王妮, 马晓庆, 马晓霞, 曹云娥. 尖镰孢黄瓜专化型枯萎病菌拮抗菌的筛选、鉴定及培养条件优化[J]. 生物技术通报, 2020, 36(9): 125-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||