生物技术通报 ›› 2022, Vol. 38 ›› Issue (4): 217-229.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0968
王新光1(), 田磊2, 王恩泽2, 钟成1(), 田春杰2()
收稿日期:
2021-08-02
出版日期:
2022-04-26
发布日期:
2022-05-06
通讯作者:
田春杰,男,博士,研究员,研究方向:秸秆资源化利用;E-mail: tiancj@iga.ac.cn;作者简介:
王新光,男,硕士研究生,研究方向:秸秆资源化利用;E-mail: wangxg1997202106@163.com
基金资助:
WANG Xin-guang1(), TIAN Lei2, WANG En-ze2, ZHONG Cheng1(), TIAN Chun-jie2()
Received:
2021-08-02
Published:
2022-04-26
Online:
2022-05-06
摘要:
针对玉米秸秆降解困难、利用率低的问题,本文筛选构建了由枯草芽孢杆菌WF-8(Bacillus subtilis WF-8)、地衣芽孢杆菌WF-11(B. lincheniformis WF-11)、蜡状芽孢杆菌WS-1(B. cereus WS-1)和黑胡桃链霉菌WF-10(Streptomyces nogalater WF-10)组成的高效降解复合菌系HD并进行秸秆降解效果评价,为高效降解玉米秸秆复合菌剂的研制和开发提供理论依据。本研究通过单因素试验结合正交试验和响应面试验,对复合菌系HD产酶培养基及发酵条件进行优化,液态和固态发酵试验评价复合菌系HD对玉米秸秆的降解效果。结果表明,复合菌系HD最佳碳氮源为秸秆粉和(NH4)2SO4,最适添加量分别为15 g/L和4 g/L;复合菌系HD最优发酵条件为:温度34℃、接种量5%、时间6 d和pH7.2。优化后的复合菌系纤维素酶活为164.21 U/mL,是优化前的1.90倍,高于单菌酶活。将构建的复合菌系HD分别接种到液体发酵培养基和固体发酵培养基后,玉米秸秆降解率均显著高于单菌及对照组,降解率分别达到了47%和63.6%。研究结果表明复合菌系HD在降解玉米秸秆方面具有较大潜力,为高效降解玉米秸秆复合菌剂的研制和开发奠定了基础。
王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229.
WANG Xin-guang, TIAN Lei, WANG En-ze, ZHONG Cheng, TIAN Chun-jie. Construction of Microbial Consortium for Efficient Degradation of Corn Straw and Evaluation of Its Degradation Effect[J]. Biotechnology Bulletin, 2022, 38(4): 217-229.
复合菌系 Microbial consortium | 菌种名称 Name of strain |
---|---|
HA | WF-10、WF-11 |
HB | WF-10、WF-11、WF-8 |
HC | WF-10、WF-11、WS-1 |
HD | WF-10、WF-11、WF-8、WS-1 |
表1 不同菌种组合的复合菌系
Table 1 Microbial consortiums formed by the combination of different strains
复合菌系 Microbial consortium | 菌种名称 Name of strain |
---|---|
HA | WF-10、WF-11 |
HB | WF-10、WF-11、WF-8 |
HC | WF-10、WF-11、WS-1 |
HD | WF-10、WF-11、WF-8、WS-1 |
水平 Level | 因素Factor | ||||
---|---|---|---|---|---|
A碳源 Carbon source | B氮源 Nitrogen source | C碳源添加量 Content of carbon source/(g·L-1) | D氮源添加量 Content of nitrogen source/(g·L-1) | ||
1 | CMC-Na | 酵母粉 | 5 | 1 | |
2 | 纤维素 | 蛋白胨 | 10 | 3 | |
3 | 秸秆粉 | 硫酸铵 | 12.5 | 4 | |
4 | 淀粉 | 硝酸铵 | 15 | 5 |
表2 碳氮源正交试验表
Table 2 Orthogonal test table for carbon and nitrogen sources
水平 Level | 因素Factor | ||||
---|---|---|---|---|---|
A碳源 Carbon source | B氮源 Nitrogen source | C碳源添加量 Content of carbon source/(g·L-1) | D氮源添加量 Content of nitrogen source/(g·L-1) | ||
1 | CMC-Na | 酵母粉 | 5 | 1 | |
2 | 纤维素 | 蛋白胨 | 10 | 3 | |
3 | 秸秆粉 | 硫酸铵 | 12.5 | 4 | |
4 | 淀粉 | 硝酸铵 | 15 | 5 |
因素 Factor | 水平 Level | |||
---|---|---|---|---|
-1 | 0 | +1 | ||
A温度/℃ | 30 | 35 | 40 | |
B接种量/% | 4 | 5 | 6 | |
C时间/d | 5 | 6 | 7 | |
D初始pH | 6 | 7 | 8 |
表3 响应面试验因素及水平
Table 3 Factors and levels of response surface experiments
因素 Factor | 水平 Level | |||
---|---|---|---|---|
-1 | 0 | +1 | ||
A温度/℃ | 30 | 35 | 40 | |
B接种量/% | 4 | 5 | 6 | |
C时间/d | 5 | 6 | 7 | |
D初始pH | 6 | 7 | 8 |
图1 单菌和复合菌系的CMCase酶活 不同字母表示同一时间不同处理间差异显著(P<0.05),下同
Fig.1 CMCase activity of a single bacterial strain and microbial consortiums Different letters indicate significant differences among treatments at the same time(P<0.05),the same below
碳源种类添加量 Content of carbon source/(g·L-1) | CMC-Na | 纤维素 Cellulose | 淀粉 Starch CMCase/(U·mL-1) | 秸秆粉 Straw powder | 蔗糖 Sucrose |
---|---|---|---|---|---|
5 | 90.26±1.96a | 80.09±2.06b | 25.63±2.66e | 71.54±1.58c | 36.64±1.87d |
7.5 | 86.24±2.30a | 77.78±2.29b | 33.95±1.58d | 76.31±1.91b | 53.38±2.07c |
10 | 81.84±1.66b | 72.58±1.64c | 64.44±3.13d | 114.18±1.93a | 55.79±1.87e |
12.5 | 85.53±2.17b | 30.07±1.70e | 78.06±1.58c | 110.69±2.20a | 66.43±1.99d |
15 | 87.75±1.75b | 26.34±1.87e | 54.56±1.96c | 115.42±1.50a | 39.67±1.64d |
表4 不同碳源及其添加量对复合菌系HD纤维素酶活的影响
Table 4 Effects of different carbon sources and contents on the cellulose produced by microbial consortium HD
碳源种类添加量 Content of carbon source/(g·L-1) | CMC-Na | 纤维素 Cellulose | 淀粉 Starch CMCase/(U·mL-1) | 秸秆粉 Straw powder | 蔗糖 Sucrose |
---|---|---|---|---|---|
5 | 90.26±1.96a | 80.09±2.06b | 25.63±2.66e | 71.54±1.58c | 36.64±1.87d |
7.5 | 86.24±2.30a | 77.78±2.29b | 33.95±1.58d | 76.31±1.91b | 53.38±2.07c |
10 | 81.84±1.66b | 72.58±1.64c | 64.44±3.13d | 114.18±1.93a | 55.79±1.87e |
12.5 | 85.53±2.17b | 30.07±1.70e | 78.06±1.58c | 110.69±2.20a | 66.43±1.99d |
15 | 87.75±1.75b | 26.34±1.87e | 54.56±1.96c | 115.42±1.50a | 39.67±1.64d |
氮源种类添加量Content of nitrogen source/(g·L-1) | 尿素 Carbamide | 酵母粉 Yeast extract | 硫酸铵 Ammonium sulfate CMCase/(U·mL-1) | 蛋白胨 Peptone | 硝酸铵 Ammonium nitrate |
---|---|---|---|---|---|
1 | 21.09±1.71e | 35.56±1.96d | 82.03±1.85a | 45.91±1.64c | 58.49±1.58b |
2 | 7.04±2.01e | 24.07±1.50c | 95.98±1.78a | 10.83±2.07d | 56.41±1.64b |
3 | 4.44±1.71d | 46.71±1.99b | 102.08±1.78a | 13.24±1.50c | 47.04±1.87b |
4 | 3.07±1.71e | 12.58±2.01d | 107.23±2.21a | 34.94±3.62c | 62.17±1.75b |
5 | 2.70±1.66e | 11.21±1.56d | 101.37±2.85a | 24.59±4.55c | 77.87±1.56b |
表5 不同氮源及其添加量对复合菌系HD纤维素酶活的影响
Table 5 Effects of different nitrogen sources and contents on the cellulose produced by microbial consortium HD
氮源种类添加量Content of nitrogen source/(g·L-1) | 尿素 Carbamide | 酵母粉 Yeast extract | 硫酸铵 Ammonium sulfate CMCase/(U·mL-1) | 蛋白胨 Peptone | 硝酸铵 Ammonium nitrate |
---|---|---|---|---|---|
1 | 21.09±1.71e | 35.56±1.96d | 82.03±1.85a | 45.91±1.64c | 58.49±1.58b |
2 | 7.04±2.01e | 24.07±1.50c | 95.98±1.78a | 10.83±2.07d | 56.41±1.64b |
3 | 4.44±1.71d | 46.71±1.99b | 102.08±1.78a | 13.24±1.50c | 47.04±1.87b |
4 | 3.07±1.71e | 12.58±2.01d | 107.23±2.21a | 34.94±3.62c | 62.17±1.75b |
5 | 2.70±1.66e | 11.21±1.56d | 101.37±2.85a | 24.59±4.55c | 77.87±1.56b |
试验号 No. | A | B | C | D | E | CMCase/ (U·mL-1) |
---|---|---|---|---|---|---|
碳源 Carbon source | 氮源 Nitrogen source | 碳源添加量 Content of carbon source /(g·L-1) | 氮源添加量 Content of nitrogen source/(g·L-1) | 空白 Blank | ||
1 | 1(CMC-Na) | 1(酵母粉) | 1(5) | 1(1) | 1 | 23.168 |
2 | 1 | 2(蛋白胨) | 2(10) | 2(3) | 2 | 13.475 |
3 | 1 | 3(硫酸铵) | 3(12.5) | 3(4) | 3 | 63.641 |
4 | 1 | 4(硝酸铵) | 4(15) | 4(5) | 4 | 63.877 |
5 | 2(纤维素) | 1 | 2 | 3 | 4 | 2.080 |
6 | 2 | 2 | 1 | 4 | 3 | 2.979 |
7 | 2 | 3 | 4 | 1 | 2 | 3.215 |
8 | 2 | 4 | 3 | 2 | 1 | 3.641 |
9 | 3(淀粉) | 1 | 3 | 4 | 2 | 26.950 |
10 | 3 | 2 | 4 | 3 | 1 | 63.262 |
11 | 3 | 3 | 1 | 2 | 4 | 10.969 |
12 | 3 | 4 | 2 | 1 | 3 | 23.877 |
13 | 4(秸秆粉) | 1 | 4 | 2 | 3 | 6.572 |
14 | 4 | 2 | 3 | 1 | 4 | 23.357 |
15 | 4 | 3 | 2 | 4 | 1 | 84.255 |
16 | 4 | 4 | 1 | 3 | 2 | 67.565 |
K1 | 41.040 | 14.692 | 26.170 | 18.404 | 43.331 | - |
K2 | 2.729 | 25.768 | 30.922 | 8.414 | 27.801 | - |
K3 | 31.264 | 40.520 | 29.147 | 49.137 | 24.267 | - |
K4 | 45.437 | 39.490 | 34.231 | 44.515 | 25.071 | - |
R | 42.708 | 25.828 | 8.061 | 40.723 | 19.064 | - |
因素主次 A>D>B>C | ||||||
最优组合 A4B3C4D3 |
表6 正交试验结果
Table 6 Results of orthogonal experiment
试验号 No. | A | B | C | D | E | CMCase/ (U·mL-1) |
---|---|---|---|---|---|---|
碳源 Carbon source | 氮源 Nitrogen source | 碳源添加量 Content of carbon source /(g·L-1) | 氮源添加量 Content of nitrogen source/(g·L-1) | 空白 Blank | ||
1 | 1(CMC-Na) | 1(酵母粉) | 1(5) | 1(1) | 1 | 23.168 |
2 | 1 | 2(蛋白胨) | 2(10) | 2(3) | 2 | 13.475 |
3 | 1 | 3(硫酸铵) | 3(12.5) | 3(4) | 3 | 63.641 |
4 | 1 | 4(硝酸铵) | 4(15) | 4(5) | 4 | 63.877 |
5 | 2(纤维素) | 1 | 2 | 3 | 4 | 2.080 |
6 | 2 | 2 | 1 | 4 | 3 | 2.979 |
7 | 2 | 3 | 4 | 1 | 2 | 3.215 |
8 | 2 | 4 | 3 | 2 | 1 | 3.641 |
9 | 3(淀粉) | 1 | 3 | 4 | 2 | 26.950 |
10 | 3 | 2 | 4 | 3 | 1 | 63.262 |
11 | 3 | 3 | 1 | 2 | 4 | 10.969 |
12 | 3 | 4 | 2 | 1 | 3 | 23.877 |
13 | 4(秸秆粉) | 1 | 4 | 2 | 3 | 6.572 |
14 | 4 | 2 | 3 | 1 | 4 | 23.357 |
15 | 4 | 3 | 2 | 4 | 1 | 84.255 |
16 | 4 | 4 | 1 | 3 | 2 | 67.565 |
K1 | 41.040 | 14.692 | 26.170 | 18.404 | 43.331 | - |
K2 | 2.729 | 25.768 | 30.922 | 8.414 | 27.801 | - |
K3 | 31.264 | 40.520 | 29.147 | 49.137 | 24.267 | - |
K4 | 45.437 | 39.490 | 34.231 | 44.515 | 25.071 | - |
R | 42.708 | 25.828 | 8.061 | 40.723 | 19.064 | - |
因素主次 A>D>B>C | ||||||
最优组合 A4B3C4D3 |
变异来源Source of variation | 平方和Sum of squares | 自由度df | 均方Mean square | F值F value | P值P value |
---|---|---|---|---|---|
碳源 | 13101.800 | 3 | 4367.267 | 51.659 | P<0.001 |
氮源 | 5491.566 | 3 | 1830.522 | 21.652 | P<0.001 |
碳源添加量 | 403.894 | 3 | 134.631 | 1.592 | P>0.05 |
氮源添加量 | 13997.620 | 3 | 4665.873 | 55.191 | P<0.001 |
误差 | 2958.934 | 35 | 84.541 | - | - |
总计 | 79674.523 | - | - | - | - |
表7 单因素方差分析结果
Table 7 One-way ANOVA results
变异来源Source of variation | 平方和Sum of squares | 自由度df | 均方Mean square | F值F value | P值P value |
---|---|---|---|---|---|
碳源 | 13101.800 | 3 | 4367.267 | 51.659 | P<0.001 |
氮源 | 5491.566 | 3 | 1830.522 | 21.652 | P<0.001 |
碳源添加量 | 403.894 | 3 | 134.631 | 1.592 | P>0.05 |
氮源添加量 | 13997.620 | 3 | 4665.873 | 55.191 | P<0.001 |
误差 | 2958.934 | 35 | 84.541 | - | - |
总计 | 79674.523 | - | - | - | - |
序号 No. | A发酵温度 Fermentation temperature/℃ | B接种量 Inoculum amount | C发酵时间 Fermentation time/d | D初始pH Initial pH | CMCase/ (U·mL-1) |
---|---|---|---|---|---|
1 | -1 | 0 | 0 | -1 | 131.991 |
2 | 0 | -1 | 0 | 1 | 145.13 |
3 | 1 | 1 | 0 | 0 | 127.494 |
4 | 0 | 0 | 0 | 0 | 165.106 |
5 | 0 | -1 | -1 | 0 | 137.849 |
6 | 0 | 1 | 1 | 0 | 145.747 |
7 | 1 | -1 | 0 | 0 | 125.508 |
8 | 0 | 0 | 0 | 0 | 160.27 |
9 | 0 | 0 | 1 | 1 | 148.274 |
10 | -1 | 0 | 0 | 1 | 146.572 |
11 | -1 | -1 | 0 | 0 | 137.872 |
12 | 1 | 0 | 1 | 0 | 132.104 |
13 | -1 | 1 | 0 | 0 | 134.255 |
14 | 0 | 1 | 0 | 1 | 148.293 |
15 | 0 | 0 | 0 | 0 | 169.106 |
16 | 0 | 1 | 0 | -1 | 145.005 |
17 | 0 | -1 | 0 | -1 | 131.797 |
18 | 1 | 0 | -1 | 0 | 131.749 |
19 | 0 | -1 | 1 | 0 | 156.809 |
20 | 0 | 0 | -1 | -1 | 144.704 |
21 | 0 | 0 | 0 | 0 | 172.624 |
22 | 0 | 0 | -1 | 1 | 145.868 |
23 | 0 | 0 | 1 | -1 | 144.87 |
24 | 0 | 1 | -1 | 0 | 150.733 |
25 | -1 | 0 | 1 | 0 | 156.43 |
26 | 0 | 0 | 0 | 0 | 162.272 |
27 | 1 | 0 | 0 | 1 | 125.485 |
28 | 1 | 0 | 0 | -1 | 126.102 |
29 | -1 | 0 | -1 | 0 | 134.104 |
表8 响应面试验结果
Table 8 Results of response surface experiments
序号 No. | A发酵温度 Fermentation temperature/℃ | B接种量 Inoculum amount | C发酵时间 Fermentation time/d | D初始pH Initial pH | CMCase/ (U·mL-1) |
---|---|---|---|---|---|
1 | -1 | 0 | 0 | -1 | 131.991 |
2 | 0 | -1 | 0 | 1 | 145.13 |
3 | 1 | 1 | 0 | 0 | 127.494 |
4 | 0 | 0 | 0 | 0 | 165.106 |
5 | 0 | -1 | -1 | 0 | 137.849 |
6 | 0 | 1 | 1 | 0 | 145.747 |
7 | 1 | -1 | 0 | 0 | 125.508 |
8 | 0 | 0 | 0 | 0 | 160.27 |
9 | 0 | 0 | 1 | 1 | 148.274 |
10 | -1 | 0 | 0 | 1 | 146.572 |
11 | -1 | -1 | 0 | 0 | 137.872 |
12 | 1 | 0 | 1 | 0 | 132.104 |
13 | -1 | 1 | 0 | 0 | 134.255 |
14 | 0 | 1 | 0 | 1 | 148.293 |
15 | 0 | 0 | 0 | 0 | 169.106 |
16 | 0 | 1 | 0 | -1 | 145.005 |
17 | 0 | -1 | 0 | -1 | 131.797 |
18 | 1 | 0 | -1 | 0 | 131.749 |
19 | 0 | -1 | 1 | 0 | 156.809 |
20 | 0 | 0 | -1 | -1 | 144.704 |
21 | 0 | 0 | 0 | 0 | 172.624 |
22 | 0 | 0 | -1 | 1 | 145.868 |
23 | 0 | 0 | 1 | -1 | 144.87 |
24 | 0 | 1 | -1 | 0 | 150.733 |
25 | -1 | 0 | 1 | 0 | 156.43 |
26 | 0 | 0 | 0 | 0 | 162.272 |
27 | 1 | 0 | 0 | 1 | 125.485 |
28 | 1 | 0 | 0 | -1 | 126.102 |
29 | -1 | 0 | -1 | 0 | 134.104 |
变异源 Source of variation | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|
Model | 4794.58 | 14 | 342.47 | 19.59 | < 0.0001 | Significant |
A-温度 | 441.43 | 1 | 441.43 | 25.26 | 0.0002 | ** |
B-接种量 | 22.86 | 1 | 22.86 | 1.31 | 0.2720 | Not significant |
C-时间 | 128.23 | 1 | 128.23 | 7.34 | 0.0170 | * |
D-pH | 102.98 | 1 | 102.98 | 5.89 | 0.0293 | * |
AB | 7.85 | 1 | 7.85 | 0.45 | 0.5137 | Not significant |
AC | 120.68 | 1 | 120.68 | 6.90 | 0.0199 | * |
AD | 57.74 | 1 | 57.74 | 3.30 | 0.0906 | Not significant |
BC | 143.35 | 1 | 143.35 | 8.20 | 0.0125 | * |
BD | 25.23 | 1 | 25.23 | 1.44 | 0.2495 | Not significant |
CD | 1.25 | 1 | 1.25 | 0.072 | 0.7927 | Not significant |
A2 | 3001.33 | 1 | 3001.33 | 171.72 | < 0.0001 | ** |
B2 | 919.69 | 1 | 919.69 | 52.62 | < 0.0001 | ** |
C2 | 279.45 | 1 | 279.45 | 15.99 | 0.0013 | ** |
D2 | 966.63 | 1 | 966.63 | 55.31 | < 0.0001 | ** |
Residual | 244.69 | 14 | 17.48 | - | - | - |
Lack of fit | 143.71 | 10 | 14.37 | 0.57 | 0.7859 | Not significant |
Pure error | 100.98 | 4 | 25.24 | - | - | - |
Cor total | 5039.27 | 28 | - | - | - | - |
R2 | 95.14% | - | - | - | - | - |
表9 回归模型方差分析
Table 9 Variance analysis of the regression equations
变异源 Source of variation | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|
Model | 4794.58 | 14 | 342.47 | 19.59 | < 0.0001 | Significant |
A-温度 | 441.43 | 1 | 441.43 | 25.26 | 0.0002 | ** |
B-接种量 | 22.86 | 1 | 22.86 | 1.31 | 0.2720 | Not significant |
C-时间 | 128.23 | 1 | 128.23 | 7.34 | 0.0170 | * |
D-pH | 102.98 | 1 | 102.98 | 5.89 | 0.0293 | * |
AB | 7.85 | 1 | 7.85 | 0.45 | 0.5137 | Not significant |
AC | 120.68 | 1 | 120.68 | 6.90 | 0.0199 | * |
AD | 57.74 | 1 | 57.74 | 3.30 | 0.0906 | Not significant |
BC | 143.35 | 1 | 143.35 | 8.20 | 0.0125 | * |
BD | 25.23 | 1 | 25.23 | 1.44 | 0.2495 | Not significant |
CD | 1.25 | 1 | 1.25 | 0.072 | 0.7927 | Not significant |
A2 | 3001.33 | 1 | 3001.33 | 171.72 | < 0.0001 | ** |
B2 | 919.69 | 1 | 919.69 | 52.62 | < 0.0001 | ** |
C2 | 279.45 | 1 | 279.45 | 15.99 | 0.0013 | ** |
D2 | 966.63 | 1 | 966.63 | 55.31 | < 0.0001 | ** |
Residual | 244.69 | 14 | 17.48 | - | - | - |
Lack of fit | 143.71 | 10 | 14.37 | 0.57 | 0.7859 | Not significant |
Pure error | 100.98 | 4 | 25.24 | - | - | - |
Cor total | 5039.27 | 28 | - | - | - | - |
R2 | 95.14% | - | - | - | - | - |
[1] | 李廷亮, 王宇峰, 王嘉豪, 等. 我国主要粮食作物秸秆还田养分资源量及其对小麦化肥减施的启示[J]. 中国农业科学, 2020, 53(23):4835-4854. |
Li TL, Wang YF, Wang JH, et al. Nutrient resource quantity from main grain crop straw incorporation and its enlightenment on chemical fertilizer reduction in wheat production in China[J]. Sci Agric Sin, 2020, 53(23):4835-4854. | |
[2] |
Ndzelu BS, Dou S, Zhang XW. Corn straw return can increase labile soil organic carbon fractions and improve water-stable aggregates in Haplic Cambisol[J]. J Arid Land, 2020, 12(6):1018-1030.
doi: 10.1007/s40333-020-0024-7 URL |
[3] | 王亚华, 臧良震, 苏毅清. 2035年中国农业现代化前景展望[J]. 农业现代化研究, 2020, 41(1):16-23. |
Wang YH, Zang LZ, Su YQ. Prospects for China’s agricultural modernization in 2035[J]. Res Agric Mod, 2020, 41(1):16-23. | |
[4] | 许晓凯, 石宁, 郭玉琴, 等. 提高玉米秸秆利用率的研究技术进展[J]. 农学学报, 2018, 8(3):58-63. |
Xu XK, Shi N, Guo YQ, et al. Research progress on improving utilization efficiency of corn stalk[J]. J Agric, 2018, 8(3):58-63. | |
[5] |
Bao W, Renganathan V. Cellobiose oxidase of Phanerochaete chrysosporium enhances crystalline cellulose degradation by cellulases[J]. FEBS Lett, 1992, 302(1):77-80.
pmid: 1587358 |
[6] | 苏玉春, 李文斌, 汪树生, 等. 毛头鬼伞菌株降解玉米秸秆效果的研究[J]. 吉林农业大学学报, 1-11. |
Su YC, Li WB, Wang SS, et al. Study on the effect of Coprinus comatus on degrading corn straw[J]. Journal of Jilin Agricultural University, 1-11. | |
[7] |
Sadhu S, Ghosh PK, De TK, et al. Optimization of cultural condition and synergistic effect of lactose with carboxymethyl cellulose on cellulase production by Bacillus sp. isolated from fecal matter of elephant(Elephas maximus)[J]. AiM, 2013, 3(3):280-288.
doi: 10.4236/aim.2013.33040 URL |
[8] |
Ruijssenaars HJ, Hartmans S. A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity[J]. Appl Microbiol Biotechnol, 2004, 65(2):177-182.
pmid: 15293032 |
[9] |
Omotunde Olowomofe T, Funmilola Babalola T, Odunola Oluyide O, et al. Isolation, screening and molecular identification of cellulose-degrading bacteria from paper and pulp mill dumpsites[J]. Front Environ Microbiol, 2019, 5(3):77.
doi: 10.11648/j.fem.20190503.12 URL |
[10] |
Lynd LR, Weimer PJ, van Zyl WH, et al. Microbial cellulose utilization:fundamentals and biotechnology[J]. Microbiol Mol Biol Rev, 2002, 66(3):506-77, table of contents.
doi: 10.1128/MMBR.66.3.506-577.2002 URL |
[11] |
Zhang Q, He J, Tian M, et al. Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium[J]. Bioresour Technol, 2011, 102(19):8899-8906.
doi: 10.1016/j.biortech.2011.06.061 URL |
[12] | 刘娜, 王炳, 刁其玉, 等. 玉米秸秆饲料菌酶复合发酵技术[J]. 饲料工业, 2018, 39(17):45-49. |
Liu N, Wang B, Diao QY, et al. Study of enzymatic and microbial fermentation technology in corn stover[J]. Feed Ind, 2018, 39(17):45-49. | |
[13] | Sui M, Rong JC, Zhang Y, et al. Screening of cellulose degrading bacteria and construction of complex microflora[J]. IOP Conf Ser:Earth Environ Sci, 2021, 632:032021. |
[14] |
崔鸿亮, 刘长莉, 李春雅, 等. 微生物菌群协同提高水稻秸秆转化机制的解析[J]. 微生物学报, 2021. DOI: 10.13343/j.cnki.wsxb.20200691
doi: 10.13343/j.cnki.wsxb.20200691 |
Cui HL, Liu CL, Li CY, et al. Analysis on the mechanism of synergistic improvement of rice straw transformation by microbial flora[J]. Acta Microbiologica Sinica, 2021. DOI: 10.13343/j.cnki.wsxb.20200691
doi: 10.13343/j.cnki.wsxb.20200691 |
|
[15] | 孟建宇, 冀锦华, 郭慧琴, 等. 常温纤维素降解细菌的筛选及其复合系的构建[J]. 生物学杂志, 2020, 37(3):86-90. |
Meng JY, Ji JH, Guo HQ, et al. Isolation of room temperature cellulose-degrading bacteria and construction of degrading consortia[J]. J Biol, 2020, 37(3):86-90. | |
[16] | 李静, 张瀚能, 赵翀, 等. 高效纤维素降解菌分离筛选、复合菌系构建及秸秆降解效果分析[J]. 应用与环境生物学报, 2016, 22(4):689-696. |
Li J, Zhang HN, Zhao C, et al. Isolation and screening of cellulose decomposing microbe and the straw decomposing effect of complex microbial system[J]. Chin J Appl Environ Biol, 2016, 22(4):689-696. | |
[17] | 张蕴琦, 徐凤花, 张书敏, 等. 水稻秸秆降解菌系的筛选及其菌群组成分析[J]. 江苏农业科学, 2017, 45(8):257-260. |
Zhang YQ, Xu FH, Zhang SM, et al. Screening of rice straw degradation strains and analysis of their flora composition[J]. Jiangsu Agric Sci, 2017, 45(8):257-260. | |
[18] | 徐丽萍, 姜喆, 葛英亮, 等. Illumina MiSeq高通量测序降解黑龙江绥化地区玉米秸秆细菌菌群的研究[J]. 食品工业科技, 2018, 39(23):105-110. |
Xu LP, Jiang Z, Ge YL, et al. Bacterial community on the corn straw in Suihua area of Heilongjiang Province by illumina miseq sequencing[J]. Sci Technol Food Ind, 2018, 39(23):105-110. | |
[19] |
于慧娟, 郭夏丽. 秸秆降解菌的筛选及其纤维素降解性能的研究[J]. 生物技术通报, 2019, 35(2):58-63.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0731 |
Yu HJ, Guo XL. Screening of straw-degrading bacteria and study on their cellulose-degrading performances[J]. Biotechnol Bull, 2019, 35(2):58-63. | |
[20] | 于素素. 低温玉米秸秆降解菌的筛选及其复合菌系产酶条件优化[D]. 沈阳:沈阳农业大学, 2019. |
Yu SS. Screening of low-temperature corn straw degradation strains and optimization of enzyme production conditions of complex strains[D]. Shenyang:Shenyang Agricultural University, 2019. | |
[21] | 文浩, 郑序影, 代佳丽, 等. 温度对水果酵素发酵性能的影响[J]. 中国食品学报, 2020, 20(2):189-195. |
Wen H, Zheng XY, Dai JL, et al. Effect of the temperature on the fermentation characteristics of fruit-jiaosu[J]. J Chin Inst Food Sci Technol, 2020, 20(2):189-195. | |
[22] | 宋琦, 许赣荣. 生姜蛋白酶酶活测定方法的研究[J]. 食品科技, 2010, 35(1):277-281. |
Song Q, Xu GR. A study on the method for evaluating of ginger protease activity[J]. Food Sci Technol, 2010, 35(1):277-281. | |
[23] |
Kowarsch M, Jabbour J. Solution-oriented global environmental assessments:Opportunities and challenges[J]. Environ Sci Policy, 2017, 77:187-192.
doi: 10.1016/j.envsci.2017.08.013 URL |
[24] | 丁攀, 叶芳, 张轲, 等. 玉米秸秆资源的综合利用及方式[J]. 河南农业, 2020(16):17. |
Ding P, Ye F, Zhang K, et al. Comprehensive utilization and methods of corn straw resources[J]. Henan Nongye, 2020(16):17. | |
[25] | 花玉鹏, 文才艺, 刘伟成, 等. 响应曲面法优化利迪链霉菌A02发酵培养基[J]. 中国生物防治学报, 2011, 27(4):520-527. |
Hua YP, Wen CY, Liu WC, et al. Optimization of medium components for production of natamycin by Streptomyces lydicus A02 with response surface methodology[J]. Chin J Biol Control, 2011, 27(4):520-527. | |
[26] |
周静, 黄文茂, 秦利军, 等. 四株PGPR菌株混菌发酵体系的构建及促生效应评价[J]. 生物技术通报, 2021, 37(4):116-126.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0989 |
Zhou J, Huang WM, Qin LJ, et al. Construction of mixed fermentation system of four PGPR strains and evaluation of its promoting effect[J]. Biotechnol Bull, 2021, 37(4):116-126. | |
[27] | 冯红梅, 秦永胜, 李筱帆, 等. 高温纤维素降解菌群筛选及产酶特性[J]. 环境科学, 2016, 37(4):1546-1552. |
Feng HM, Qin YS, Li XF, et al. Screening and enzyme production characteristics of thermophilic cellulaseproducing strains[J]. Environ Sci, 2016, 37(4):1546-1552. | |
[28] |
Li PP. Survival and performance of two cellulose-degrading microbial systems inoculated into wheat straw-amended soil[J]. J Microbiol Biotechnol, 2012, 22(1):126-132.
doi: 10.4014/jmb.1102.02021 URL |
[29] | 崔宗均, 李美丹, 朴哲, 等. 一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J]. 环境科学, 2002, 23(3):36-39. |
Cui ZJ, Li MD, Piao Z, et al. Selection of A composite microbial system MC1 with efficient and stability cellulose degradation bacteria and its function[J]. Chin J Enviromental Sci, 2002, 23(3):36-39. | |
[30] |
Abdollahzadeh R, Pazhang M, Najavand S, et al. Screening of pectinase-producing bacteria from farmlands and optimization of enzyme production from selected strain by RSM[J]. Folia Microbiol:Praha, 2020, 65(4):705-719.
doi: 10.1007/s12223-020-00776-7 URL |
[31] |
Li Z, Pei X, Zhang Z, et al. The unique GH5 cellulase member in the extreme halotolerant fungus Aspergillus glaucus CCHA is an endoglucanase with multiple tolerance to salt, alkali and heat:prospects for straw degradation applications[J]. Extremophiles, 2018, 22(4):675-685.
doi: 10.1007/s00792-018-1028-5 URL |
[32] |
Qinggeer, Gao JL, Yu XF, et al. Screening of a microbial consortium with efficient corn stover degradation ability at low temperature[J]. J Integr Agric, 2016, 15(10):2369-2379.
doi: 10.1016/S2095-3119(15)61272-2 |
[33] | 萨如拉, 高聚林, 于晓芳, 等. 玉米秸秆低温降解复合菌系的筛选[J]. 中国农业科学, 2013, 46(19):4082-4090. |
Sarula, Gao JL, Yu XF, et al. Screening of low temperature maize stalk decomposition microorganism[J]. Sci Agric Sin, 2013, 46(19):4082-4090. | |
[34] | 单建荣, 全鑫, 朱用哲, 等. 一株低温纤维素降解菌的筛选与产酶条件优化[J]. 生态学杂志, 2021, 40(4):1128-1136. |
Shan JR, Quan X, Zhu YZ, et al. Screening of a low-temperature cellulose-degrading bacterium and optimization of cellulase production conditions[J]. Chin J Ecol, 2021, 40(4):1128-1136. | |
[35] |
Kansoh AL, Essam SA, Zeinat AN. Biodegradation and utilization of bagasse with Trichoderma reesie[J]. Polym Degrad Stab, 1999, 63(2):273-278.
doi: 10.1016/S0141-3910(98)00105-0 URL |
[36] |
Li C, Yang Z, Zhang RH, et al. Effect of pH on cellulase production and morphology of Trichoderma reesei and the application in cellulosic material hydrolysis[J]. J Biotechnol, 2013, 168(4):470-477.
doi: 10.1016/j.jbiotec.2013.10.003 URL |
[37] |
Prasetyo J, Sumita S, Okuda N, et al. Response of cellulase activity in pH-controlled cultures of the filamentous fungus Acremonium cellulolyticus[J]. Appl Biochem Biotechnol, 2010, 162(1):52-61.
doi: 10.1007/s12010-009-8826-2 pmid: 19882113 |
[38] | 耿冰, 郭美锦, 张嗣良, 等. pH值对绿色木霉(Trichoderma viride)产纤维素酶的影响[J]. 工业微生物, 2008, 38(5):1-6. |
Geng B, Guo MJ, Zhang SL, et al. Influence of pH on cellulase production by Trichoderma viride in shaking flask culture[J]. Ind Microbiol, 2008, 38(5):1-6. | |
[39] | 毛连山, 宋向阳, 勇强, 等. 初始pH对合成木聚糖酶和纤维素酶的影响[J]. 南京林业大学学报:自然科学版, 2002, 26(4):11-14. |
Mao LS, Song XY, Yong Q, et al. Effects of the initial pH on xylanase and cellulase synjournal by Trichoderma reesei rut C-30[J]. J Nanjing For Univ, 2002, 26(4):11-14. |
[1] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[2] | 刘雪丹, 杨萌, 张静, 赵东旭. 葡萄糖-木糖共利用对重组大肠杆菌合成D-1,2,4-丁三醇的影响[J]. 生物技术通报, 2021, 37(9): 171-179. |
[3] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[4] | 周静, 黄文茂, 秦利军, 韩丽珍. 四株PGPR菌株混菌发酵体系的构建及促生效应评价[J]. 生物技术通报, 2021, 37(4): 116-126. |
[5] | 李林超, 张超, 董庆, 郭成, 周波, 高峥. 堆肥过程中纤维素降解菌的分离与鉴定[J]. 生物技术通报, 2019, 35(9): 165-171. |
[6] | 徐珊 ,李任强 ,郑振华 ,张云 ,孙爱君 ,胡云峰. 红树林微生物DH-2胞外蛋白酶的性质及产酶条件优化[J]. 生物技术通报, 2018, 34(6): 120-127. |
[7] | 刘婉, 赵珊珊 ,焦浈, 杨逢源, 王雁萍. 产纤维素酶菌株的筛选及离子束诱变[J]. 生物技术通报, 2018, 34(6): 149-154. |
[8] | 郭珺, 武爱莲, 闫敏, 庞金梅, 焦晓燕. 利用豆制品废水发酵枯萎病拮抗菌Pb-4条件研究[J]. 生物技术通报, 2017, 33(8): 167-173. |
[9] | 吴秉奇,刘淑杰,陈福明,周楚莹. 海洋石油降解菌的筛选及复合菌系的构建[J]. 生物技术通报, 2016, 32(8): 184-193. |
[10] | 刘金辉, 李晓路, 姜岩, 王海宽. 施氏假单胞菌PS59产脂肪酶发酵条件及脂肪酶洗涤性能优化[J]. 生物技术通报, 2016, 32(7): 186-193. |
[11] | 张瑶, 路国兵, 周波, 王冰, 牟志美. 洋葱伯克霍尔德氏菌Lu10-1产脂肪酶发酵条件优化及酶学性质研究[J]. 生物技术通报, 2015, 31(9): 190-196. |
[12] | 李娟,夏凯丽,王远宏,董蕴琪,郝蕾. 解淀粉芽孢杆菌LJ1摇瓶发酵条件优化[J]. 生物技术通报, 2015, 31(12): 214-220. |
[13] | 张谦,贾佳,林智,杨晓锋,郭宏涛,王剑英,Carol Sze Ki Lin. 产脂肪酶黑曲霉摇瓶发酵条件优化研究[J]. 生物技术通报, 2015, 31(12): 227-233. |
[14] | 李杏春, 何双辉, 戴玉成. 大伏革菌产纤维素酶条件优化及高效菌株筛选[J]. 生物技术通报, 2014, 0(4): 152-158. |
[15] | 叶婧;刘雪;张丽;于江;朱昌雄;. 蔗渣发酵菌剂培养基的筛选及发酵条件的优化[J]. , 2009, 0(11): 168-173. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||