生物技术通报 ›› 2021, Vol. 37 ›› Issue (4): 85-95.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0550
魏畅1(), 戚秀秀1, 吴越2, 刘晓丹1, 王祎1, 姜瑛1(), 柳海涛1()
收稿日期:
2020-05-08
出版日期:
2021-04-26
发布日期:
2021-05-13
作者简介:
魏畅,女,硕士研究生,研究方向:资源利用与植物保护;E-mail:基金资助:
WEI Chang1(), QI Xiu-xiu1, WU Yue2, LIU Xiao-dan1, WANG Yi1, JIANG Ying1(), LIU Hai-tao1()
Received:
2020-05-08
Published:
2021-04-26
Online:
2021-05-13
摘要:
从砂质潮土中分离筛选出一株高效溶磷菌,并初探其对土壤磷素形态变化及小麦生长的影响,旨在为其在实际生产中的应用奠定理论基础。利用PKO培养基从砂质潮土中分离几株溶磷菌,对比其溶磷能力,筛选出一株高效溶磷菌,综合菌株形态、生理生化特性以及16S rDNA 分子学鉴定菌株种属,对其溶磷条件进行优化,并通过盆栽实验探索菌株在土壤中的溶磷过程,验证菌株促生效果。结果显示,筛选出一株高效溶磷菌W6,经鉴定为弯曲芽孢杆菌(Bacillus flexus);摇瓶实验结果表明:当培养时间为24 h、初始pH 6.0、装液量75 mL/250 mL、碳源为木糖、氮源为硝酸钾时,该菌株溶磷量达到最大;小麦盆栽实验结果表明:与对照相比,接种菌株W6的土壤H2O-P、NaHCO3-Po、NaHCO3-Pi、NaOH-Po、NaOH-Pi含量分别增加了127.3%、80.0%、54.5%、11.8%和20.0%,而难溶性HCl-P、浓HCl-Po、浓HCl-Pi、浓H2SO4-P含量分别降低了10.9%、23.0%、42.1%和33.3%,接种菌株W6的小麦根长、根表面积、根体积、根尖数、根直径分别显著增加了66.8%、57.0%、50.0%、13.6%和9.1%;小麦干重、氮、磷及钾含量分别显著增加了70.5%、32.1%、24.7%、94.2%和34.4%。菌株W6能够促进磷素形态由难溶性向有效性进行转化,对小麦根系的生长、发育具有明显的促进作用,提高植物对磷素的吸收及利用效率,在农业生产上有着较大的应用潜力。
魏畅, 戚秀秀, 吴越, 刘晓丹, 王祎, 姜瑛, 柳海涛. 砂质潮土高效溶磷菌的筛选鉴定、条件优化及应用[J]. 生物技术通报, 2021, 37(4): 85-95.
WEI Chang, QI Xiu-xiu, WU Yue, LIU Xiao-dan, WANG Yi, JIANG Ying, LIU Hai-tao. Screening,Identification,Condition Optimization and Application of Efficient Phosphate Solubilizing Bacteria in Sandy Fluvo Aquic Soil[J]. Biotechnology Bulletin, 2021, 37(4): 85-95.
图1 菌株溶磷效果 图中误差线表示标准偏差。小写字母表示不同溶磷菌间差异达到 (P < 0.05) 显著水平,下同
Fig.1 Phosphate solubilizing efficiency of strains The error line in the figure refers to the standard deviation. The lowercase letters indicate that the difference among different phosphate-solubilizing bacteria reached a significant level (P < 0.05). The same below
项目Item | 结果Results | 项目Projects | 结果Results | |
---|---|---|---|---|
革兰氏染色 Gram staining | + | 淀粉水解 Starch hydrolysis | + | |
好氧性实验 Aerobic test | 兼性厌氧 Facultative anaerobic | 柠檬酸盐利用 Citrate utilization | - | |
接触酶实验 Catalase test | + | 硝酸盐还原 Nitrate reduction | + | |
甲基红(M.R)反应Methyl red reaction | - | V-P实验 V-P test | + |
表1 W6菌株的生理生化特性
Table 1 Physiological characteristics of strain W6
项目Item | 结果Results | 项目Projects | 结果Results | |
---|---|---|---|---|
革兰氏染色 Gram staining | + | 淀粉水解 Starch hydrolysis | + | |
好氧性实验 Aerobic test | 兼性厌氧 Facultative anaerobic | 柠檬酸盐利用 Citrate utilization | - | |
接触酶实验 Catalase test | + | 硝酸盐还原 Nitrate reduction | + | |
甲基红(M.R)反应Methyl red reaction | - | V-P实验 V-P test | + |
图3 基于菌株W6和相关菌株的16S rDNA 序列采用邻接法建立的系统发育树 标尺代表每1 000个核苷中有2个核苷替代
Fig. 3 Phylogenetic tree that based on 16S rDNA sequences of strain W6 and related strains Each scale refers to that there are two nucleoside substitutions per 1 000 nucleosides
处理Treatments | 不同提取态磷素含量Contents of phosphorus in different extraction states/(g·kg-1) | 回收率 Recovery rate | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
H2O-P | NaHCO3-Po | NaHCO3-Pi | NaOH-Po | NaOH-Pi | HCl-P | 浓HCl-Po Concentrated HCl-Po | 浓HCl-Pi Concentrated HCl-Pi | 浓H2SO4-P Concentrated H2SO4-P | ||
CK | 0.11±0.02 | 0.35±0.10 | 0.22±0.00 | 0.17±0.02 | 0.15±0.03 | 1.56±0.07 | 0.74±0.07* | 0.57±0.04* | 0.09±0.02 | 98% |
W6 | 0.25±0.00** | 0.63±0.10** | 0.34±0.02 | 0.19±0.01 | 0.18±0.02 | 1.39±0.16 | 0.57±0.12 | 0.33±0.09 | 0.06±0.01 | 96% |
表2 接种菌株W6对土壤磷素形态的影响
Table 2 Effects of innoculated strain W6 on the forms of phosphorus
处理Treatments | 不同提取态磷素含量Contents of phosphorus in different extraction states/(g·kg-1) | 回收率 Recovery rate | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
H2O-P | NaHCO3-Po | NaHCO3-Pi | NaOH-Po | NaOH-Pi | HCl-P | 浓HCl-Po Concentrated HCl-Po | 浓HCl-Pi Concentrated HCl-Pi | 浓H2SO4-P Concentrated H2SO4-P | ||
CK | 0.11±0.02 | 0.35±0.10 | 0.22±0.00 | 0.17±0.02 | 0.15±0.03 | 1.56±0.07 | 0.74±0.07* | 0.57±0.04* | 0.09±0.02 | 98% |
W6 | 0.25±0.00** | 0.63±0.10** | 0.34±0.02 | 0.19±0.01 | 0.18±0.02 | 1.39±0.16 | 0.57±0.12 | 0.33±0.09 | 0.06±0.01 | 96% |
处理Treatment | 根长Root length/cm | 根表面积Root surface area/cm2 | 根体积Root volume/cm3 | 根尖数Number of root shoots/个 | 根直径Root diameter/cm |
---|---|---|---|---|---|
CK | 584.58±58.81 | 43.73±1.40 | 0.26±0.04 | 2578±71.91 | 0.22±0.15 |
W6 | 975.06±22.21** | 68.66±1.75** | 0.39±0.02** | 2929±32.19* | 0.24±0.02* |
表3 接种菌株W6对小麦根系的影响
Table 3 Effects of strain W6 on the root system of wheat
处理Treatment | 根长Root length/cm | 根表面积Root surface area/cm2 | 根体积Root volume/cm3 | 根尖数Number of root shoots/个 | 根直径Root diameter/cm |
---|---|---|---|---|---|
CK | 584.58±58.81 | 43.73±1.40 | 0.26±0.04 | 2578±71.91 | 0.22±0.15 |
W6 | 975.06±22.21** | 68.66±1.75** | 0.39±0.02** | 2929±32.19* | 0.24±0.02* |
处理 Treatment | 干重 Dry weight/g | 株高 Plant height/cm | 全氮 Total nitrogen/(g·kg-1) | 全磷 Total phosphorus/(g·kg-1) | 全钾 Total potassium/(g·kg-1) |
---|---|---|---|---|---|
CK | 1.46±0.07 | 16.52±1.68 | 1.86±0.17 | 1.71±0.56 | 6.68±0.58 |
W6 | 2.49±0.77** | 21.83±0.31* | 2.32±0.06* | 3.32±0.55** | 8.98±0.19** |
表4 接种菌株W6对小麦植株的影响
Table 4 Effects of strain W6 on wheat
处理 Treatment | 干重 Dry weight/g | 株高 Plant height/cm | 全氮 Total nitrogen/(g·kg-1) | 全磷 Total phosphorus/(g·kg-1) | 全钾 Total potassium/(g·kg-1) |
---|---|---|---|---|---|
CK | 1.46±0.07 | 16.52±1.68 | 1.86±0.17 | 1.71±0.56 | 6.68±0.58 |
W6 | 2.49±0.77** | 21.83±0.31* | 2.32±0.06* | 3.32±0.55** | 8.98±0.19** |
[1] | 殷中伟. 真菌溶磷相关基因的克隆与功能分析[D]. 北京:中国农业大学, 2015. |
Yin ZW. Cloning and functional analysis of phosphate - solubilizing related genes fungi[D]. Beijing:China Agricultural University, 2015. | |
[2] | 李艺慧. 不同形态磷对采煤塌陷复垦土壤养分、磷分级的影响[D]. 太谷:山西农业大学, 2018. |
Li YH. Effects of different phosphorus forms on nutrient and phosphorus classification of coal mining collapse[D]. Taigu:Shanxi Agricultural University, 2018. | |
[3] | 银婷婷, 程美娟, 黄志勇. 高效解磷菌的筛选及其促生机制的初步研究[J]. 生物技术通报, 2015,31(12):234-242. |
Yin TT, Cheng MJ, et al. The screening of efficient phosphorus - solubilizing bacteria and the primary study on its mechanism of plant - growth - promoting[J]. Biotech Bull, 2015,31(12):234-242. | |
[4] |
张艺灿, 等. 根际溶磷微生物促生机制研究进展[J]. 中国土壤与肥料, 2020. DOI: 10.11838/sfsc.1673-6257.19156.
doi: 10.11838/sfsc.1673-6257.19156 |
Zhang YC, et al. Research progress on plant - growth - promoting mechanisms of phosphate - solubilizing rhizosphere microbes[J]. Soil and Fertilizer Sciences in China, 2020.DOI: 10.11838/sfsc.1673-6257.19156.
doi: 10.11838/sfsc.1673-6257.19156 |
|
[5] | 宫安东, 朱梓钰, 路亚南, 等. 吡咯伯克霍尔德菌WY6-5的溶磷、抑菌与促玉米生长作用研究[J]. 中国农业科学, 2019,52(9):1574-1586. |
Gong AD, Zhu ZY, Lu YN, et al. Functional analysis of Burkholderia pyrrocinia WY6-5 on phosphate solubilizing, antifungal and growth - promoting activity of maize[J]. Scientia Agricultura Sinica, 2019,52(9):1574-1586. | |
[6] | 盛荣, 肖和艾, 谭周进, 等. 土壤解磷微生物及其磷素有效性转化机理研究进展[J]. 土壤通报, 2010,41(6):1505-1510. |
Sheng R, Xiao HA, Tan ZJ, et al. Advance in phosphorus - dissolving microorganisms and the mechanisms on phosphorus transformation and availability[J]. Chin J Soil Sci, 2010,41(6):1505-1510. | |
[7] | 杨顺, 杨婷, 林斌, 等. 两株溶磷真菌的筛选、鉴定及溶磷效果的评价[J]. 微生物学报, 2018,58(2):264-273. |
Yang S, Yang T, Lin B, et al. Isolation and evaluation of two phosphate - dissolving fungi[J]. Acta Microbiologica Sinica, 2018,58(2):264-273. | |
[8] | 王亚艺. 使用解磷细菌对小油菜产量及土壤磷含量的影响[J]. 北方园艺, 2014(5):155-158. |
Wang YY. Effect of P solubilizing bacteria on rape yield and the content of soil phosphorus[J]. North Hor, 2014(5):155-158. | |
[9] | 林耀奔, 叶艳妹, 杨建辉, 等. 土地整治对土壤微生物多样性的影响分析[J]. 环境科学学报, 2019,39(8):2644-2653. |
Lin YB, Ye YM, Yang JH, et al. The effect of land consolidation on soil microbial diversity[J]. Acta Scientiae Circumstantiae, 2019,39(8):2644-2653. | |
[10] | 滕泽栋, 李敏, 朱静, 等. 解磷微生物对土壤磷资源利用影响的研究进展[J]. 土壤通报, 2017,48(1):229-235. |
Teng ZD, Li M, Zhu J, et al. Research advances in effect of phosphate - solubilizing microorganisms on soil phosphorus resource utilization[J]. Chinese Journal of Soil Science, 2017,48(1):229-235. | |
[11] | 彭静静, 高辉远. 解磷菌的研究进展及展望[J]. 泰山学院学报, 2016,38(6):95-99. |
Peng JJ, Gao HY. Research progress and prospect of phosphate - solubilizing microorganisms[J]. Journal of Taishan University, 2016,38(6):95-99. | |
[12] | 林启美, 赵小蓉, 孙众鑫, 等. 四种不同生态系统的土壤解磷细菌数量及种群分布[J]. 土壤与环境, 2000,9(1):34-37. |
Lin QM, Zhao XR, Sun ZX, et al. Community characters of soil phosphobacteria in four ecosystems[J]. Soil and Environmental Sciences, 2000,9(1):34-37. | |
[13] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. |
Bao SD. Soil and agricultural chemistry analysis[M]. Beijing: China Agricultural Press, 2000. | |
[14] | 胡百文. 解磷菌的筛选及生态特性研究[D]. 大连:大连海洋大学, 2014. |
Hu BW. Research on screening of phosphate - solubilizing bacteria and their ecological characteristics[D]. Dalian:Dalian Ocean University, 2014. | |
[15] | RE布坎南, NE吉本斯. 伯杰氏细菌鉴定手册[M]. 北京: 科学出版社, 1984. |
RE Buchanan, NE Gibbons. Bergey’s manual of systemaic bacteriology[M]. Beijing: Science Press, 1984. | |
[16] | 夏北成, Zhou JZ, Tiedje JM. 分子生物学方法在微生物生态学中的应用[J]. 中山大学学报, 1998,37(2):97-101. |
Xia BC, Zhou JZ, Tiedje JM. Application of molecular methods in microbial ecology[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 1998,37(2):97-101. | |
[17] | Monis PT, Giglio S, Saint CP. Comparison of SYTO9 and SYBR Green I for real - time polymerase chain reaction and investigation of the effect of dye concentration on amplification and DNA melting curve analysis[J]. Analyt Bioch, 2005,340(1):24-34. |
[18] |
Hedley MJ, Stewart J, Chauhan B. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982,46(5):970-976.
doi: 10.2136/sssaj1982.03615995004600050017x URL |
[19] | Panhwar QA, Ali A, et al. Screening of plant growth promoting rhizobacteria for sustainable wheat(Triticum aestivum L.)crop production[J]. Pakistan J Botany, 2020,52(1):345-353. |
[20] | Kishore N, Pindi PK, Reddy SR. Phosphate - solubilizing microorganisms:A critical review[M]. Springer:Plant Biology and Biotechnology, 2015: 307-333. |
[21] | 钟传青. 解磷微生物溶解磷矿粉和土壤难溶磷的特性及其溶磷方式研究[D]. 南京:南京农业大学, 2004. |
Zhong CQ. Studies on solubilizing effects on phosphate rock powder and insoluble phosphorus in soil of P - solubilizing microorganisms and their mechanism[D]. Nanjing:Nanjing Agricultural University, 2004. | |
[22] |
Oliveira CA, Alves VMC, Marriel IE, et al. Phosphate solubilizing microorganisms isolated from rhizosphere of maize cultivated in an oxisol of the Brazilian Cerrado Biome[J]. Soil Biology and Biochemistry, 2009,41(9):1782-1787.
doi: 10.1016/j.soilbio.2008.01.012 URL |
[23] | Yadav R, Tarafdar J. Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds[J]. Soil Biol Bioch, 2003(6):745-751. |
[24] |
Pérez E, Sulbarán M, Ball MM, et al. Isolation and characterization of mineral phosphate - solubilizing bacteria naturally colonizing a limonitic crust in the south - eastern Venezuelan region[J]. Soil Biology and Biochemistry, 2007,39(11):2905-2914.
doi: 10.1016/j.soilbio.2007.06.017 URL |
[25] |
Acevedo E, et al. Phosphate-solubilizing microorganisms associated with the rhizosphere of oil palm(Elaeis guineensis Jacq.)in Colombia[J]. Appl Soil Ecology, 2014,80:26-33.
doi: 10.1016/j.apsoil.2014.03.011 URL |
[26] | 李海云, 孔维宝, 达文燕, 等. 土壤溶磷微生物研究进展[J]. 生物学通报, 2013,48(7):1-5. |
Li HY, Kong WB, Da WY, et al. Research progress of soil phosphorus - dissolving microorganisms[J]. Bulletin of Biology, 2013,48(7):1-5. | |
[27] | 崔晓, 徐艳霞, 刘俊杰, 等. 芽孢杆菌在农业生产中的应用[J]. 土壤与作物, 2019,8(1):32-42. |
Cui X, Xu YX, et al. Advances of bacillus application in agriculture:A review[J]. Soils and Crops, 2019,8(1):32-42. | |
[28] |
Prashar P, Kapoor N, Sachdeva S. Rhizosphere:Its structure, bacterial diversity and significance[J]. Reviews in Environmental Science and Biotechnology, 2014,13(1):63-77.
doi: 10.1007/s11157-013-9317-z URL |
[29] |
Tao GC, Tian SJ, Cai MY, et al. Phosphate-solubilizing and-mineralizing abilities of bacteria isolated from soils[J]. Pedosphere, 2008,18(4):515-523.
doi: 10.1016/S1002-0160(08)60042-9 URL |
[30] | 钱婷, 叶建仁. 巨大芽孢杆菌ZS-3溶无机磷机制初探及其对樟树的促生作用[J]. 生物技术通报, 2020,36(8):45-52. |
Qian T, Ye JR. Preliminary study on the mechanism of dissolving inorganic phosphorus by Bacillus megaterium ZS-3 and its growth promotion of Cinnamomum camphora[J]. Biotechnology Bulletin, 2020,36(8):45-52. | |
[31] | 任圆圆, 张学雷, 李笑莹, 等. 河南省成土母质与土壤空间分布多样性的特征[J]. 土壤学报, 2019,56(6):1309-1320. |
Ren YY, Zhang XL, Li XY, et al. Diversities of soil forming parent materials and spatial distribution of soils in henan province[J]. Acta Pedologica Sinica, 2019,56(6):1309-1320. | |
[32] | 仝昊天, 韩燕来, 李培培, 等. 几种保水材料对砂质潮土水分参数的影响[J]. 水土保持研究, 2019,26(4):116-122. |
Tong HT, Han YL, Li PP, et al. Effects of application of water - retaining materials on water infiltration and water retention characteristics of sandy soil[J]. Research of Soil and Water Conservation, 2019,26(4):116-122. | |
[33] |
Meena VS, Meena SK, Verma JP, et al. Plant beneficial rhizospheric microorganism(PBRM)strategies to improve nutrients use efficiency:A review[J]. Ecological Engineering, 2017,107:8-32.
doi: 10.1016/j.ecoleng.2017.06.058 URL |
[34] | 邢芳芳, 高明夫, 等. 大麦根际高效溶磷菌的筛选、鉴定及促生效果研究[J]. 华北农学报, 2016,31(S1):252-257. |
Xing FF, Gao MF, Zhuo YY, et al. Screening and identification of phosphate solubilizing bacteria in Hordeum vulgare rhizosphere and its growth promoting effect[J]. Acta Agriculturae Boreali-Sinica, 2016,31(S1):252-257. | |
[35] | 万璐, 康丽华, 廖宝文, 等. 红树林根际解磷菌分离、培养及解磷能力的研究[J]. 林业科学研究, 2004,17(1):89-94. |
Wan L, Kang LH, Liao BW, et al. Mangrove PSB:Isolation, culture and phosphate-dissolving ability[J]. Forest Research, 2004,17(1):89-94. | |
[36] | 赵辉. 小麦根际解磷菌的筛选及其解磷效果的研究[D]. 泰安:山东农业大学, 2017. |
Zhao H. Isolation of phosphate solubilizing bacteria from the rhizosphere of wheat and study on efficiency of solubilizing phosphate[D]. Tai’an:Shandong Agricultural University, 2017. | |
[37] | 万兵兵, 刘晔, 等. 一株玉米根际多功能促生菌的筛选鉴定及效应研究[J]. 生物技术通报, 2016,32(8):169-176. |
Wang BB, Liu Y, Wu Y, et al. Screening and identification of maize growth - promoting rhizobacteria and its promoting effects on maize[J]. Biotechnology Bulletin, 2016,32(8):169-176. | |
[38] | 姜瑛, 吴越, 王国文, 等. 一株固氮解磷菌的筛选鉴定及其对花生的促生作用研究[J]. 土壤, 2015,47(4):698-703. |
Jiang Y, Wu Y, Wang GW, et al. Plant growth - promoting bacterium Variovorax sp. JX14 from calcareous alluvial soil:Characterization and growth promotion on peanuts[J]. Soils, 2015,47(4):698-703. | |
[39] | 刘晔, 刘晓丹, 等. 花生根际多功能高效促生菌的筛选鉴定及其效应研究[J]. 生物技术通报, 2017,33(10):125-134. |
LiuY, Liu XD, Zhang LL, et al. Screening, identification of multifunctional peanut root - promoting rhizobacteria and its promoting effects on peanuts(Arachis hypogaea L.)[J]. Biotechnology Bulletin, 2017,33(10):125-134. | |
[40] | 王莉晶. 高效解磷菌的筛选及其对小麦生长的影响[D]. 大连:大连理工大学, 2008. |
Wang LJ. The screening of phosphorus strains and its influence on wheats[D]. Dalian:Dalian University of Technology, 2008. |
[1] | 温晓蕾, 李建嫄, 李娜, 张娜, 杨文香. 小麦叶锈菌与小麦互作的酵母双杂交cDNA文库构建与应用[J]. 生物技术通报, 2023, 39(9): 136-146. |
[2] | 韩志阳, 贾子苗, 梁秋菊, 王轲, 唐华丽, 叶兴国, 张双喜. 二套小麦-簇毛麦染色体附加系苗期耐盐性及籽粒硒和叶酸的含量[J]. 生物技术通报, 2023, 39(8): 185-193. |
[3] | 袁野, 周佳, 屈建航, 张博源, 罗宇, 李海峰. 高效反硝化聚磷菌的筛选及其脱氮除磷条件和性能研究[J]. 生物技术通报, 2023, 39(7): 266-276. |
[4] | 孔德真, 聂迎彬, 崔凤娟, 桑伟, 徐红军, 田笑明. 杂交小麦制种研究现状及展望[J]. 生物技术通报, 2023, 39(1): 95-103. |
[5] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
[6] | 赵静雅, 彭梦雅, 张时雨, 单艺轩, 邢小萍, 施艳, 李海洋, 杨雪, 李洪连, 陈琳琳. C2H2锌指转录因子FpCzf7参与假禾谷镰孢的生长和致病性[J]. 生物技术通报, 2022, 38(8): 216-224. |
[7] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
[8] | 张昊鑫, 王中华, 牛兵, 郭慷, 刘璐, 姜瑛, 张仕祥. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5): 100-111. |
[9] | 王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229. |
[10] | 李思思, 张博源, 符运会, 周佳, 屈建航. 一株高效溶磷细菌的条件优化及其溶磷特性研究[J]. 生物技术通报, 2022, 38(12): 274-286. |
[11] | 孔德真, 聂迎彬, 徐红军, 崔凤娟, 穆培源, 田笑明. 三系杂交小麦混播制种对杂交种产量、纯度及F1产量优势的影响[J]. 生物技术通报, 2022, 38(10): 132-139. |
[12] | 孙淑芳, 骆永丽, 李春辉, 金敏, 胥倩. UPLC-MS/MS测定小麦茎秆木质素单体交联结构的方法[J]. 生物技术通报, 2022, 38(10): 66-72. |
[13] | 李文宗, 李春萍, 梁鑫, 王润豪, 王磊. 无人机叶面喷施梯度微肥对不同品种冬小麦籽粒矿质元素的影响[J]. 生物技术通报, 2021, 37(9): 152-160. |
[14] | 刘雪丹, 杨萌, 张静, 赵东旭. 葡萄糖-木糖共利用对重组大肠杆菌合成D-1,2,4-丁三醇的影响[J]. 生物技术通报, 2021, 37(9): 171-179. |
[15] | 段绪果, 张玉华, 黄婷婷, 丁乾, 栾舒越, 朱秋雨. 化学分子伴侣及诱导条件协同强化Thermotoga maritima α-葡聚糖磷酸化酶可溶性表达[J]. 生物技术通报, 2021, 37(8): 233-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||