生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 67-79.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1426
李雨真1(), 梅天秀1, 李治文1, 王淇1, 李俊2, 邹岳2, 赵心清1()
收稿日期:
2022-11-18
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
赵心清,女,博士,教授,研究方向:微生物代谢工程和生物质转化;E-mail: xqzhao@sjtu.edu.cn作者简介:
李雨真,女,研究方向:酵母菌资源和活性物质;E-mail: Lyz781601267@sjtu.edu.cn
基金资助:
LI Yu-zhen1(), MEI Tian-xiu1, LI Zhi-wen1, WANG Qi1, LI Jun2, ZOU Yue2, ZHAO Xin-qing1()
Received:
2022-11-18
Published:
2023-07-26
Online:
2023-08-17
摘要:
红酵母是一类产红色素酵母的总称,广泛分布于土壤、海洋、江河、湖泊等各种生态环境。很多红酵母菌株具有生产多糖、油脂、类胡萝卜素等活性物质的能力,在养殖、食品、医药和化妆品等领域具有很大的应用潜力。近年来对红酵母的研究逐渐深入,对不同红酵母的基因组序列和代谢关键酶进行了研究,扩展了对这类重要酵母的深入认识。此外,对红酵母的基因组编辑和代谢工程改造也取得了进展,为提高其工业应用效率奠定了基础。本文综述了红酵母的生物技术应用,以及红酵母基因组分析和代谢工程改造相关的研究进展,为未来更深入理解红酵母的生理代谢和利用红酵母转化可再生生物质资源,进行可持续生产提供基础。
李雨真, 梅天秀, 李治文, 王淇, 李俊, 邹岳, 赵心清. 红酵母基因组和代谢工程改造研究进展[J]. 生物技术通报, 2023, 39(7): 67-79.
LI Yu-zhen, MEI Tian-xiu, LI Zhi-wen, WANG Qi, LI Jun, ZOU Yue, ZHAO Xin-qing. Advances in Genomic Studies and Metabolic Engineering of Red Yeasts[J]. Biotechnology Bulletin, 2023, 39(7): 67-79.
红酵母种Red yeast species | 活性成分及用途Active ingredients and uses | 参考文献Reference |
---|---|---|
黏红酵母 R. glutinis | 红色素、类胡萝卜素、多糖、辅酶Q10、橄榄的软化、处理工业污水 | [ |
胶红酵母 R. mucilaginosa | 氨基酸、酶、番茄红素、β-胡萝卜素、虾青素、多种脂肪酸、多糖、化妆品成分、饲料添加剂 | [ |
圆红酵母 R. toruloides | 类胡萝卜素、虾青素、油脂、倍半萜、脂肪酸酯、脂肪醇、化妆品成分 | [ |
克氏红酵母 R. kratochvilovae | 脂类、外糖脂、β-葡聚糖、类胡萝卜素 | [ |
表1 红酵母的活性成分及用途
Table 1 Active ingredients and uses of red yeast
红酵母种Red yeast species | 活性成分及用途Active ingredients and uses | 参考文献Reference |
---|---|---|
黏红酵母 R. glutinis | 红色素、类胡萝卜素、多糖、辅酶Q10、橄榄的软化、处理工业污水 | [ |
胶红酵母 R. mucilaginosa | 氨基酸、酶、番茄红素、β-胡萝卜素、虾青素、多种脂肪酸、多糖、化妆品成分、饲料添加剂 | [ |
圆红酵母 R. toruloides | 类胡萝卜素、虾青素、油脂、倍半萜、脂肪酸酯、脂肪醇、化妆品成分 | [ |
克氏红酵母 R. kratochvilovae | 脂类、外糖脂、β-葡聚糖、类胡萝卜素 | [ |
物种名称Organism name | 菌种Strain | BioProject | 测序水平Level | 大小Size/Mb | Scaffolds | 编码序列CDS |
---|---|---|---|---|---|---|
R. mucilaginosa | CYJ03 | PRJNA506114 | Contig | 19.037 2 | 88 | 6301[ |
R. mucilaginosa | KR | PRJNA435582 | Scaffold | 20.066 2 | 359 | 7059 |
R. toruloides | CGMCC 2.1609 | PRJNA297267 | Scaffold | 33.389 7 | 365 | 9820[ |
R. toruloides | CBS 14 | PRJEB40807 | Contig | 20.534 9 | 3 | 9464[ |
R. kratochvilovae | CBS 7436 | PRJNA643234 | Scaffold | 21.685 7 | 357 | - |
R. kratochvilovae | VS II C KN 5 | PRJNA644637 | Scaffold | 21.857 6 | 376 | - |
R. glutinis | ZHK | PRJNA605146 | Scaffold | 22.325 5 | 30 | 6774[ |
R. glutinis | ATCC 204091 | PRJNA59971 | Scaffold | 20.478 9 | 29[ | 3359[ |
R. babjevae | CBS 7808 | PRJEB48745 | Contig | 21.862 4 | 3[ | 7591[ |
R. babjevae | DBVPG 8058 | PRJEB48745 | Contig | 21.522 1 | 1[ | 7481[ |
R. paludigena | CM33 | PRJNA491831 | Scaffold | 20.655 4 | 78 | - |
R. paludigena | P4R5 | PRJNA732286 | Scaffold | 20.967 9 | 277 | - |
表2 红酵母属部分种基因组装和注释数据
Table 2 Gene assembly and annotation data for selected species of the genus Rhodotorula
物种名称Organism name | 菌种Strain | BioProject | 测序水平Level | 大小Size/Mb | Scaffolds | 编码序列CDS |
---|---|---|---|---|---|---|
R. mucilaginosa | CYJ03 | PRJNA506114 | Contig | 19.037 2 | 88 | 6301[ |
R. mucilaginosa | KR | PRJNA435582 | Scaffold | 20.066 2 | 359 | 7059 |
R. toruloides | CGMCC 2.1609 | PRJNA297267 | Scaffold | 33.389 7 | 365 | 9820[ |
R. toruloides | CBS 14 | PRJEB40807 | Contig | 20.534 9 | 3 | 9464[ |
R. kratochvilovae | CBS 7436 | PRJNA643234 | Scaffold | 21.685 7 | 357 | - |
R. kratochvilovae | VS II C KN 5 | PRJNA644637 | Scaffold | 21.857 6 | 376 | - |
R. glutinis | ZHK | PRJNA605146 | Scaffold | 22.325 5 | 30 | 6774[ |
R. glutinis | ATCC 204091 | PRJNA59971 | Scaffold | 20.478 9 | 29[ | 3359[ |
R. babjevae | CBS 7808 | PRJEB48745 | Contig | 21.862 4 | 3[ | 7591[ |
R. babjevae | DBVPG 8058 | PRJEB48745 | Contig | 21.522 1 | 1[ | 7481[ |
R. paludigena | CM33 | PRJNA491831 | Scaffold | 20.655 4 | 78 | - |
R. paludigena | P4R5 | PRJNA732286 | Scaffold | 20.967 9 | 277 | - |
图2 红酵母的研究改造 SCO:单细胞油脂。对红酵母的基因组编辑包括采用CRISPR-Cas系统和农杆菌介导的遗传转化对基因进行插入和删除,接着在表型、基因转录、蛋白质合成等水平进行检测分析,得到目的菌种后可用于工业化生产油脂、类胡萝卜素等物质
Fig. 2 Research and modification of red yeast SCO: Single cell oil. Genome editing of red yeast includes insertion and deletion of genes using the CRISPR-Cas system and Agrobacterium tumefaciens-mediated genetic transformation, followed by test and analysis at the level of phenotype, mRNA translation, protein expression, etc. The target strain can then be used for industrial production of lipids, carotenoids, and other substances
目标性状 Targeted trait | 代谢工程策略 Metabolic engineering strategies | 生物来源 Source organism | 结果 Outcomes | 参考文献 Reference |
---|---|---|---|---|
Limonene production | Overexpressed the limonene synthase, neryl pyrophosphate synthase/geranyl pyrophosphate synthase and the native hydroxy-methyl-glutaryl-CoA reductase | R. toruloides NP11 | Produced a maximum limonene titer of 393.5 mg/L | [ |
CoQ10, sterols, and phytoene accumulation | a T-DNA insertion in the CAR1 gene coding for phytoene desaturase | R. mucilaginosa C2.5t1 | Significant decreases in cell density and fatty acids content, higher productions of phytoene, CoQ10, and sterols | [ |
Fatty alcohol production | Two overexpression targets(ACL1 and ACC1)and two deletion targets(the acyltransferases DGA1 and LRO1) | R. toruloides IFO0880 | 1.8 to 4.4-fold increases to the fatty alcohol titer in culture tubes | [ |
Fatty acid ethyl esters production | Introduced various wax ester synthase genes from different sources, mutated bifunctional enzyme to abolish the DGAT activity | R. toruloides Δku70 | Improved the FAEEs titer to 1.02 g/L | [ |
Fatty acid production | Overexpressed acetyl coenzyme A carboxylase(ACC1 carboxylase)gene and repressed 3-hydroxy 3-methylglutaryl reductase(HMG-CoA reductase) | R. mucilaginosa Y-1 | Acombination of both inhibitor and inducer resulted in a 57% increase in lipid concentration | [ |
Carotenoid biosynthesis | Constructed vectors pZPK-CRT-1 and pZPK-CRT-2 with strong promoters PGPD and TADH2 | R. toruloides NP11 | The intracellular carotenoid content of the transformants increased by 30% | [ |
表3 对红酵母代谢工程改造总结
Table 3 Summary of metabolic engineering modification of red yeast
目标性状 Targeted trait | 代谢工程策略 Metabolic engineering strategies | 生物来源 Source organism | 结果 Outcomes | 参考文献 Reference |
---|---|---|---|---|
Limonene production | Overexpressed the limonene synthase, neryl pyrophosphate synthase/geranyl pyrophosphate synthase and the native hydroxy-methyl-glutaryl-CoA reductase | R. toruloides NP11 | Produced a maximum limonene titer of 393.5 mg/L | [ |
CoQ10, sterols, and phytoene accumulation | a T-DNA insertion in the CAR1 gene coding for phytoene desaturase | R. mucilaginosa C2.5t1 | Significant decreases in cell density and fatty acids content, higher productions of phytoene, CoQ10, and sterols | [ |
Fatty alcohol production | Two overexpression targets(ACL1 and ACC1)and two deletion targets(the acyltransferases DGA1 and LRO1) | R. toruloides IFO0880 | 1.8 to 4.4-fold increases to the fatty alcohol titer in culture tubes | [ |
Fatty acid ethyl esters production | Introduced various wax ester synthase genes from different sources, mutated bifunctional enzyme to abolish the DGAT activity | R. toruloides Δku70 | Improved the FAEEs titer to 1.02 g/L | [ |
Fatty acid production | Overexpressed acetyl coenzyme A carboxylase(ACC1 carboxylase)gene and repressed 3-hydroxy 3-methylglutaryl reductase(HMG-CoA reductase) | R. mucilaginosa Y-1 | Acombination of both inhibitor and inducer resulted in a 57% increase in lipid concentration | [ |
Carotenoid biosynthesis | Constructed vectors pZPK-CRT-1 and pZPK-CRT-2 with strong promoters PGPD and TADH2 | R. toruloides NP11 | The intracellular carotenoid content of the transformants increased by 30% | [ |
[53] |
Buedenbender L, Kumar A, Blümel M, et al. Genomics- and metabolomics-based investigation of the deep-sea sediment-derived yeast, Rhodotorula mucilaginosa 50-3-19/20B[J]. Mar Drugs, 2020, 19(1): 14.
doi: 10.3390/md19010014 URL |
[54] |
Sen DY, Paul K, Saha C, et al. A unique life-strategy of an endophytic yeast Rhodotorula mucilaginosa JGTA-S1-a comparative genomics viewpoint[J]. DNA Res, 2019, 26(2): 131-146.
doi: 10.1093/dnares/dsy044 URL |
[55] |
Zhu ZW, Zhang SF, Liu HW, et al. A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides[J]. Nat Commun, 2012, 3: 1112.
doi: 10.1038/ncomms2112 |
[56] | Zhou RH, Zhu ZW, Zhang SF, et al. The complete mitochondrial genome of the lipid-producing yeast Rhodotorula toruloides[J]. FEMS Yeast Res, 2020, 20(6): foaa048. |
[57] |
Oliveira J, Antunes M, Godinho CP, et al. From a genome assembly to full regulatory network prediction: the case study of Rhodotorula toruloides putative Haa1-regulon[J]. BMC Bioinformatics, 2021, 22(1): 399.
doi: 10.1186/s12859-021-04312-3 pmid: 34376148 |
[58] |
Addis MF, Tanca A, Landolfo S, et al. Proteomic analysis of Rhodotorula mucilaginosa: dealing with the issues of a non-conventional yeast[J]. Yeast, 2016, 33(8): 433-449.
doi: 10.1002/yea.v33.8 URL |
[59] | Chen TY, Shi YX, Peng C, et al. Transcriptome analysis on key metabolic pathways in Rhodotorula mucilaginosa under Pb(II)stress[J]. Appl Environ Microbiol, 2022, 88(7): e0221521. |
[60] |
Sun ZP, Lv J, Ji CF, et al. Analysis of carotenoid profile changes and carotenogenic genes transcript levels in Rhodosporidium toruloides mutants from an optimized Agrobacterium tumefaciens-mediated transformation method[J]. Biotechnol Appl Biochem, 2021, 68(1): 71-81.
doi: 10.1002/bab.v68.1 URL |
[61] | Coradetti ST, Pinel D, Geiselman GM, et al. Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides[J]. eLife, 2018, 7: e32110. |
[62] |
Liu HD, Jiao X, Wang YN, et al. Fast and efficient genetic transformation of oleaginous yeast Rhodosporidium toruloides by using electroporation[J]. FEMS Yeast Res, 2017, 17(2). DOI: 10.1093/femsyr/fox017.
doi: 10.1093/femsyr/fox017 |
[63] |
Pi HW, Anandharaj M, Kao YY, et al. Engineering the oleaginous red yeast Rhodotorula glutinis for simultaneous β-carotene and cellulase production[J]. Sci Rep, 2018, 8(1): 10850.
doi: 10.1038/s41598-018-29194-z |
[64] |
Yang ZL, Blenner M. Genome editing systems across yeast species[J]. Curr Opin Biotechnol, 2020, 66: 255-266.
doi: 10.1016/j.copbio.2020.08.011 URL |
[65] |
Schultz JC, Cao MF, Zhao HM. Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion in Rhodosporidium toruloides[J]. Biotechnol Bioeng, 2019, 116(8): 2103-2109.
doi: 10.1002/bit.27001 pmid: 31038202 |
[66] | Otoupal PB, Ito M, Arkin AP, et al. Multiplexed CRISPR-Cas9-based genome editing of Rhodosporidium toruloides[J]. mSphere, 2019, 4(2): e00099-e00019. |
[67] | Jiao X, Zhang Y, Liu XJ, et al. Developing a CRISPR/Cas9 system for genome editing in the basidiomycetous yeast Rhodosporidium toruloides[J]. Biotechnol J, 2019, 14(7): e1900036. |
[68] | 苏立秋, 张歌, 姚震, 等. 非传统酵母代谢工程研究进展[J]. 生物工程学报, 2021, 37(5): 1659-1676. |
Su LQ, Zhang G, Yao Z, et al. Advances in metabolic engineering of non-conventional yeasts[J]. Chin J Biotechnol, 2021, 37(5): 1659-1676. | |
[69] |
叶敏, 高教琪, 周雍进. 非常规酵母细胞工厂合成天然产物[J]. 生物技术通报, 2021, 37(8): 12-24.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0815 URL |
Ye M, Gao JQ, Zhou YJ. Engineering non-conventional yeast cell factory for the biosynthesis of natural products[J]. Biotechnol Bull, 2021, 37(8): 12-24.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-0815 URL |
|
[70] |
Cao MF, Tran VG, Qin JS, et al. Metabolic engineering of oleaginous yeast Rhodotorula toruloides for overproduction of triacetic acid lactone[J]. Biotechnol Bioeng, 2022, 119(9): 2529-2540.
doi: 10.1002/bit.v119.9 URL |
[1] | Coelho MA, Almeida JMGCF, Hittinger CT, et al. Draft genome sequence of Sporidiobolus salmonicolor CBS 6832, a red-pigmented basidiomycetous yeast[J]. Genome Announc, 2015, 3(3): e00444-e00415. |
[2] |
Buzzini P, Innocenti M, Turchetti B, et al. Carotenoid profiles of yeasts belonging to the Genera Rhodotorula, Rhodosporidium, Sporobolomyces, and Sporidiobolus[J]. Can J Microbiol, 2007, 53(8): 1024-1031.
pmid: 17898860 |
[3] | 黄开森. 胶红酵母类胡萝卜素产量提升及其对小鼠免疫功能和肠道菌群的影响[D]. 湛江: 广东海洋大学, 2020. |
Huang KS. Increase of carotenoid output from Rhodotorula mucilaginosa and its impacts on immune functions and intestinal flora of mice[D]. Zhanjiang: Guangdong Ocean University, 2020. | |
[4] | 孙文怡, 张素芳, 林心萍, 等. 一种遗传转化方法在海洋红酵母(Rhodotorula mucilaginosa)中的应用[J]. 中国生物工程杂志, 2016, 36(6): 81-86. |
Sun WY, Zhang SF, Lin XP, et al. Application of a transformation in Rhodotorula mucilaginosa genetic engineering[J]. China Biotechnol, 2016, 36(6): 81-86. | |
[5] | 魏艳敏, 钟辉, 刘钢, 等. 中国淡水红酵母(Rhodotorula harrison)种类调查[J]. 南开大学学报: 自然科学版, 1997, 30(3): 103-105. |
Wei YM, Zhong H, Liu G, et al. Species of Rhodotorula harrison from fresh water of China[J]. J Nankai Univ, 1997, 30(3): 103-105. | |
[6] | 周与良, 黄铁石, 但汉斌, 等. 中国海红酵母属(Rhodotorula harrison)的种类[J]. 南开大学学报: 自然科学版, 1999, 32(4): 115-116. |
Zhou YL, Huang TS, Dan HB, et al. Rhodotorula harrison in China Sea[J]. J Nankai Univ, 1999, 32(4): 115-116. | |
[7] | 宁为民, 温崇庆, 黄雪敏, 等. 胶红酵母分离鉴定及其对凡纳滨对虾幼体存活和变态的影响[J]. 水产科学, 2021, 40(1): 37-45. |
[71] |
Zhang MY, Gao QD, Liu YJ, et al. Metabolic engineering of Rhodotorula toruloides for resveratrol production[J]. Microb Cell Fact, 2022, 21(1): 270.
doi: 10.1186/s12934-022-02006-w |
[72] |
Liu SS, Zhang MY, Ren YY, et al. Engineering Rhodosporidium toruloides for limonene production[J]. Biotechnol Biofuels, 2021, 14(1): 243.
doi: 10.1186/s13068-021-02094-7 |
[73] |
Tkáčová J, Zara G, Ianiri G, et al. Impairment of carotenoid biosynthesis through CAR1 gene mutation results in CoQ10, sterols, and phytoene accumulation in Rhodotorula mucilaginosa[J]. Appl Microbiol Biotechnol, 2022, 106(1): 317-327.
doi: 10.1007/s00253-021-11673-5 pmid: 34910239 |
[74] |
Schultz JC, Mishra S, Gaither E, et al. Metabolic engineering of Rhodotorula toruloides IFO0880 improves C16 and C18 fatty alcohol production from synthetic media[J]. Microb Cell Fact, 2022, 21(1): 26.
doi: 10.1186/s12934-022-01750-3 pmid: 35183175 |
[75] |
Thliveros P, Kiran EU, Webb C. Microbial biodiesel production by direct methanolysis of oleaginous biomass[J]. Bioresour Technol, 2014, 157: 181-187.
doi: 10.1016/j.biortech.2014.01.111 URL |
[76] |
Zhang Y, Peng J, Zhao HM, et al. Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters[J]. Biotechnol Biofuels, 2021, 14(1): 115.
doi: 10.1186/s13068-021-01965-3 pmid: 33964988 |
[77] |
Zhang Y, Zhang SF, Chu YD, et al. Genetic manipulation of the interconversion between diacylglycerols and triacylglycerols in Rhodosporidium toruloides[J]. Front Bioeng Biotechnol, 2022, 10: 1034972.
doi: 10.3389/fbioe.2022.1034972 URL |
[78] |
Chaturvedi S, Gupta AK, Bhattacharya A, et al. Overexpression and repression of key rate-limiting enzymes(acetyl CoA carboxylase and HMG reductase)to enhance fatty acid production from Rhodotorula mucilaginosa[J]. J Basic Microbiol, 2021, 61(1): 4-14.
doi: 10.1002/jobm.v61.1 URL |
[79] |
周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1184 URL |
Zhou L, Liang XM, Zhao L. Biosynthesis of natural carotenoids: progress and perspective[J]. Biotechnol Bull, 2022, 38(7): 119-127. | |
[7] | Ning WM, Wen CQ, Huang XM, et al. Isolation, identification and effects of a strain of yeast Rhodotorula mucilaginosa on survival and metamorphosis of larval Pacific white shrimp litopenaeus vannamei[J]. Fish Sci, 2021, 40(1): 37-45. |
[8] | Kanmanee C, Srinual O, Punyatong M, et al. Effects of dietary supplementation with red yeast(Sporidiobolus pararoseus)on productive performance, egg quality, and duodenal cell proliferation of laying hens[J]. Animals(Basel), 2022, 12(3): 238. |
[9] | 汤伟, 李佳欣, 王悦, 等. 胶红酵母CYJ03的体外体内抗氧化活性研究[J]. 工业微生物, 2022, 52(1): 1-8. |
Tang W, Li JX, Wang Y, et al. Studies on antioxidative activities of Rhodotorula mucilaginosa CYJ03 in vitro and in vivo[J]. Ind Microbiol, 2022, 52(1): 1-8. | |
[10] | 陶永胜, 牟含, 李国, 等. 野生胶红酵母糖苷酶水解媚丽新酒中香气糖苷研究[J]. 农业机械学报, 2014, 45(12): 249-254. |
Tao YS, Mu H, Li G, et al. Catalytic hydrolysis of aroma glycosides in meili young wine using glycosidase from wild Rhodotorula mucilaginosa[J]. Trans Chin Soc Agric Mach, 2014, 45(12): 249-254. | |
[11] | 李爱华, 王星晨, 彭文婷, 等. 胶红酵母与酿酒酵母混合酒精发酵中酵母生长与糖苷酶活动力学[J]. 西北农业学报, 2018, 27(6): 896-903. |
Li AH, Wang XC, Peng WT, et al. Kinetics of biomass and glycosidase activities during mixed alcoholic fermentation of selected Rhodotorula mucilaginosa and Saccharomyces cerevisiae[J]. Acta Agric Boreali Occidentalis Sin, 2018, 27(6): 896-903. | |
[12] | 李佳益. 红酵母红素对急性肝损伤的干预及作用机制研究[D]. 无锡: 江南大学, 2021. |
Li JY. The effects and mechanisms of torularhodin on acute liver injury[D]. Wuxi: Jiangnan University, 2021. | |
[13] |
Nevzglyadova OV, Mikhailova EV, Soidla TR. Yeast red pigment, protein aggregates, and amyloidoses: a review[J]. Cell Tissue Res, 2022, 388(2): 211-223.
doi: 10.1007/s00441-022-03609-w pmid: 35258715 |
[80] |
De Vuyst L, Harth H, et al.Van Kerrebroeck S, Yeast diversity of sourdoughs and associated metabolic properties and functionalities[J]. Int J Food Microbiol, 2016, 239: 26-34.
doi: S0168-1605(16)30363-4 pmid: 27470533 |
[81] | 孙文怡. 基于农杆菌介导的圆红冬孢酵母遗传重组系统的研究[D]. 大连: 大连理工大学, 2017. |
Sun WY. Agrobacterium tumefaciens-mediated transformation-based genetic recombination system for Rhodosporidium toruloides[D]. Dalian: Dalian University of Technology, 2017. | |
[82] |
Patra P, Das M, Kundu P, et al. Recent advances in systems and synthetic biology approaches for developing novel cell-factories in non-conventional yeasts[J]. Biotechnol Adv, 2021, 47: 107695.
doi: 10.1016/j.biotechadv.2021.107695 URL |
[83] |
Ploessl D, Zhao YX, Cao MF, et al. A repackaged CRISPR platform increases homology-directed repair for yeast engineering[J]. Nat Chem Biol, 2022, 18(1): 38-46.
doi: 10.1038/s41589-021-00893-5 |
[84] |
Cai P, Duan XP, Wu XY, et al. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris[J]. Nucleic Acids Res, 2021, 49(13): 7791-7805.
doi: 10.1093/nar/gkab535 URL |
[85] |
Gao JQ, Gao N, Zhai XX, et al. Recombination machinery engineering for precise genome editing in methylotrophic yeast Ogataea polymorpha[J]. iScience, 2021, 24(3): 102168.
doi: 10.1016/j.isci.2021.102168 URL |
[86] |
Lyu LT, Chu YD, Zhang SF, et al. Engineering the oleaginous yeast Rhodosporidium toruloides for improved resistance against inhibitors in biomass hydrolysates[J]. Front Bioeng Biotechnol, 2021, 9: 768934.
doi: 10.3389/fbioe.2021.768934 URL |
[87] |
Rebello S, Abraham A, Madhavan A, et al. Non-conventional yeast cell factories for sustainable bioprocesses[J]. FEMS Microbiol Lett, 2018, 365(21). DOI: 10.1093/femsle/fny222.
doi: 10.1093/femsle/fny222 |
[14] | 王鸿, 吴一书, 谢燕瑾. 一株海洋真菌小红酵母及其在制备抗肿瘤药物中的应用: CN102925372A[P]. 2013-02-13. |
Wang H, Wu YS, Xie YJ. Marine fungus Rhodotorula minuta and application thereof in preparing anti-tumor medicines: CN102925372A[P]. 2013-02-13. | |
[15] | 罗鹏. 一种海洋红酵母面膜及其制备方法: CN111956584A[P]. 2020-11-20. |
Luo P. Rhodosporidium sphaercarpum facial mask and preparation method thereof: CN111956584A[P]. 2020-11-20. | |
[16] | 蔡义文. 富番茄红素酵母提取物抗衰老眼霜及面膜研发[D]. 广州: 华南理工大学, 2018. |
Cai YW. Development of anti-aging eye cream and mask with lycopene yeast extract[D]. Guangzhou: South China University of Technology, 2018. | |
[17] | 韩俊甜. 黏红酵母的选育及利用废水进行发酵的研究[D]. 北京: 北京化工大学, 2014. |
Han JT. Screening for Rhodotorula glutinic and the fermentation using wastewater as feedstock[D]. Beijing: Beijing University of Chemical Technology, 2014. | |
[18] |
庄荣玉, 王如晨, 邱晓挺, 等. 胶红酵母生产生物活性物质研究进展[J]. 食品科学, 2020, 41(1): 318-329.
doi: 10.7506/spkx1002-6630-20181213-169 |
Zhuang RY, Wang RC, Qiu XT, et al. Bioactive substances produced by Rhodotorula mucilaginosa: a comprehensive review[J]. Food Sci, 2020, 41(1): 318-329. | |
[19] |
薛梅, 张瑞蕊, 张艳, 等. 天山乌鲁木齐河源1号冰川浅冰芯中红酵母菌多样性及种系的产酶特性分析[J]. 冰川冻土, 2020, 42(4): 1308-1320.
doi: 10.7522/j.issn.1000-0240.2020.0104 |
Xue M, Zhang RR, Zhang Y, et al. Diversity and extracellular enzyme activities of Rhodotorula strains isolated from surface ice core of the Glacier No.1 at headwaters of Urumqi River, Tianshan Mountains[J]. J Glaciol Geocryol, 2020, 42(4): 1308-1320. | |
[20] | 凌晓, 郭刚, 陈雷, 等. 高氨氮利用酵母菌的筛选及相关酶活性[J]. 微生物学通报, 2020, 47(12): 4042-4049. |
Ling X, Guo G, Chen L, et al. High ammonia nitrogen utilization yeast strains and their related enzyme activities[J]. Microbiol China, 2020, 47(12): 4042-4049. | |
[21] |
Li N, Cui R, Zhang F, et al. A novel enzyme from Rhodotorula mucilaginosa aldolase: isolation, identification and degradation for patulin in apple juice[J]. Process Biochem, 2022, 116: 148-156.
doi: 10.1016/j.procbio.2022.03.001 URL |
[22] | 尹荐, 陶永胜, 孙玮璇, 等. 优选非酿酒酵母胞外酶增香酿造干白葡萄酒效果[J]. 农业工程学报, 2020, 36(4): 278-286. |
Yin J, Tao YS, Sun WX, et al. Effect of aroma enhancement for dry white wine by selected non-Saccharomyces extracellular enzymes[J]. Trans Chin Soc Agric Eng, 2020, 36(4): 278-286. | |
[23] | 马文锦, 李梅林, 王博, 等. 胶红酵母CICC 33013胞外多糖抑制肝癌细胞活性研究[J]. 食品与机械, 2020, 36(2): 159-164. |
Ma WJ, Li ML, Wang B, et al. Inhibitory effect of exo-polysaccharide from Rhodotorula mucilaginosa CICC 33013 on hepatocellular carcinoma cell activity[J]. Food & Mach, 2020, 36(2): 159-164. | |
[24] | 马文锦, 李梅林, 王博, 等. 胶红酵母Rhodotorula mucilaginosa CM-1菌株的鉴定及胞外多糖的分离纯化[J]. 食品与发酵工业, 2021, 47(21): 46-52. |
Ma WJ, Li ML, Wang B, et al. Identification of Rhodotorula muci-laginosa CM-1 strain and isolation and purification of extracellular polysaccharide[J]. Food Ferment Ind, 2021, 47(21): 46-52. | |
[25] | 李梅林, 马文锦, 王博, 等. 胶红酵母胞外多糖抗氧化活性及对药物性肝损伤的护肝机制[J]. 食品与机械, 2022, 38(3): 173-177. |
Li ML, Ma WJ, Wang B, et al. Antioxidant activity of exo-polysaccharide from Rhodotorula mucilaginosa CM-1 and its protective mechanism against drug-induced liver injury[J]. Food & Mach, 2022, 38(3): 173-177. | |
[26] | Flores-Cotera LB, Chávez-Cabrera C, Martínez-Cárdenas A, et al. Deciphering the mechanism by which the yeast Phaffia rhodozyma responds adaptively to environmental, nutritional, and genetic cues[J]. J Ind Microbiol Biotechnol, 2021, 48(9/10): kuab048. |
[27] |
Gómez M, Campusano S, Gutiérrez MS, et al. Sterol regulatory element-binding protein Sre1 regulates carotenogenesis in the red yeast Xanthophyllomyces dendrorhous[J]. J Lipid Res, 2020, 61(12): 1658-1674.
doi: 10.1194/jlr.RA120000975 URL |
[28] |
Hara KY, Kageyama Y, Tanzawa N, et al. Development of astaxanthin production from citrus peel extract using Xanthophyllomyces dendrorhous[J]. Environ Sci Pollut Res Int, 2021, 28(10): 12640-12647.
doi: 10.1007/s11356-020-11163-7 |
[29] |
Madhour A, Anke H, Mucci A, et al. Biosynthesis of the xanthophyll plectaniaxanthin as a stress response in the red yeast Dioszegia(Tremellales, Heterobasidiomycetes, Fungi)[J]. Phytochemistry, 2005, 66(22): 2617-2626.
doi: 10.1016/j.phytochem.2005.09.010 URL |
[30] | Zhang QW, Kong CL, Tao YS. Fate of carotenoids in yeasts: synthesis and cleavage[J]. Crit Rev Food Sci Nutr, 2022: 2048352. |
[31] |
Sen T, Barrow CJ, Deshmukh SK. Microbial pigments in the food industry-challenges and the way forward[J]. Front Nutr, 2019, 6: 7.
doi: 10.3389/fnut.2019.00007 pmid: 30891448 |
[32] | 杨素晶, 蹇华丽, 魏锋, 等. 航天诱变菌株JH-R23产虾青素培养条件优化[J]. 食品科技, 2021, 46(11): 1-8. |
Yang SJ, Jian HL, Wei F, et al. Optimization of culture conditions for astaxanthin production by space mutation strain JH-R23[J]. Food Sci Technol, 2021, 46(11): 1-8.
doi: 10.1016/j.tifs.2015.07.006 URL |
|
[33] | 蔡汉钦, 杨立芳, 屈新敏, 等. 广西北部湾石角红树林根际红酵母的筛选鉴定,基因组分析及细胞组成测定[J]. 基因组学与应用生物学, 2022, 41(4): 812-821. |
Cai HQ, Yang LF, Qu XM, et al. Screening, identification, genome analysis and cell composition determination of Rhodotorula in mangrove rhizosphere at beibu Gulf Shijiao of Guangxi[J]. Genom Appl Biol, 2022, 41(4): 812-821. | |
[34] |
Deeba F, Kiran Kumar K, Ali Wani S, et al. Enhanced biodiesel and β-carotene production in Rhodotorula pacifica INDKK using sugarcane bagasse and molasses by an integrated biorefinery framework[J]. Bioresour Technol, 2022, 351: 127067.
doi: 10.1016/j.biortech.2022.127067 URL |
[35] | 陈琦. 黏红酵母色素及胞外多糖的药理作用研究[D]. 哈尔滨: 黑龙江中医药大学, 2016. |
Chen Q. The study on pharmacological activities of pigment and exopolysaccharide of Rhodotorula glutinis swjs-jm1[D]. Harbin:Heilongjiang University of Chinese Medicine, 2016. | |
[36] | 尹腊梅. 黏红酵母发酵生产辅酶Q10的研究[D]. 北京: 北京化工大学, 2011. |
Yin LM. Fermentation production of coenzyme Q10 by Rhodotorula glutinis[D]. Beijing: Beijing University of Chemical Technology, 2011. | |
[37] |
Tofalo R, Fusco V, Böhnlein C, et al. The life and times of yeasts in traditional food fermentations[J]. Crit Rev Food Sci Nutr, 2020, 60(18): 3103-3132.
doi: 10.1080/10408398.2019.1677553 |
[38] |
Kumar A, Arora S, Jain KK, et al. Metabolic coupling in the co-cultured fungal-yeast suite of Trametes ljubarskyi and Rhodotorula mucilaginosa leads to hypersecretion of laccase isozymes[J]. Fungal Biol, 2019, 123(12): 913-926.
doi: 10.1016/j.funbio.2019.09.013 URL |
[39] |
Garcia-Cortes A, Garcia-Vásquez JA, Aranguren Y, et al. Pigment production improvement in Rhodotorula mucilaginosa AJB01 using design of experiments[J]. Microorganisms, 2021, 9(2): 387.
doi: 10.3390/microorganisms9020387 URL |
[40] |
Zhao Y, Song BC, Li J, et al. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products[J]. World J Microbiol Biotechnol, 2021, 38(1): 13.
doi: 10.1007/s11274-021-03201-4 |
[41] |
Tran TN, Tran QV, Huynh HT, et al. Astaxanthin production by newly isolated Rhodosporidium toruloides: optimization of medium compositions by response surface methodology[J]. Not Bot Horti Agrobo, 2018, 47(2): 320-327.
doi: 10.15835/nbha47111361 URL |
[42] | Wen ZQ, Zhang SF, Odoh CK, et al. Rhodosporidium toruloides - A potential red yeast chassis for lipids and beyond[J]. FEMS Yeast Res, 2020, 20(5): foaa038. |
[43] |
Byrtusová D, Szotkowski M, Kurowska K, et al. Rhodotorula kratochvilovae CCY 20-2-26-the source of multifunctional metabolites[J]. Microorganisms, 2021, 9(6): 1280.
doi: 10.3390/microorganisms9061280 URL |
[44] |
Szotkowski M, Holub J, Šimanský S, et al. Bioreactor Co-cultivation of high lipid and carotenoid producing yeast Rhodotorula kratochvilovae and several microalgae under stress[J]. Microorganisms, 2021, 9(6): 1160.
doi: 10.3390/microorganisms9061160 URL |
[45] |
Tang W, Wang Y, Cai YL, et al. Genome sequence of a marine carotenoid producing yeast Rhodotorula mucilaginosa CYJ03[J]. J Ocean Univ China, 2020, 19(2): 466-472.
doi: 10.1007/s11802-020-4149-2 |
[46] | Sambles C, Middelhaufe S, Soanes D, et al. Genome sequence of the oleaginous yeast Rhodotorula toruloides strain CGMCC 2.1609[J]. Genom Data, 2017, 13: 1-2. |
[47] |
Martín-Hernández GC, Müller B, Chmielarz M, et al. Chromosome-level genome assembly and transcriptome-based annotation of the oleaginous yeast Rhodotorula toruloides CBS 14[J]. Genomics, 2021, 113(6): 4022-4027.
doi: 10.1016/j.ygeno.2021.10.006 pmid: 34648882 |
[48] | Li CJ, Zhao D, Cheng P, et al. Genomics and lipidomics analysis of the biotechnologically important oleaginous red yeast Rhodotorula glutinis ZHK provides new insights into its lipid and carotenoid metabolism[J]. BMC Genomics, 2020, 21(1): 834. |
[49] | Paul D, Magbanua Z, Arick M, et al. Genome sequence of the oleaginous yeast Rhodotorula glutinis ATCC 204091[J]. Genome Announc, 2014, 2(1): e00046-e00014. |
[50] | Martín-Hernández GC, Müller B, Brandt C, et al. Near chromosome-level genome assembly and annotation of Rhodotorula babjevae strains reveals high intraspecific divergence[J]. J Fungi(Basel), 2022, 8(4): 323. |
[51] | Daudu R, Parker CW, Singh NK, et al. Draft genome sequences of Rhodotorula mucilaginosa strains isolated from the international space station[J]. Microbiol Resour Announc, 2020, 9(31): e00570-e00520. |
[52] | Gan HM, Thomas BN, Cavanaugh NT, et al. Whole genome sequencing of Rhodotorula mucilaginosa isolated from the chewing stick(Distemonanthus benthamianus): insights into Rhodotorula phylogeny, mitogenome dynamics and carotenoid biosynthesis[J]. PeerJ, 2017, 5: e4030. |
[1] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[2] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[3] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[4] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[5] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[6] | 郭少华, 毛会丽, 刘征权, 付美媛, 赵平原, 马文博, 李旭东, 关建义. 一株鱼源致病性嗜水气单胞菌XDMG的全基因组测序及比较基因组分析[J]. 生物技术通报, 2023, 39(8): 291-306. |
[7] | 杜冬冬, 钱晶, 李思琪, 刘雯菲, 魏向利, 刘长勇, 罗瑞峰, 康立超. 单核细胞增生李斯特菌LMXJ15全基因组测序及分析[J]. 生物技术通报, 2023, 39(7): 298-306. |
[8] | 尹明华, 余锾媛, 肖心怡, 王玉婷. 江西铅山红芽芋叶绿体基因组特征及系统发育分析[J]. 生物技术通报, 2023, 39(6): 233-247. |
[9] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[10] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[11] | 周晓杰, 杨思琪, 张译文, 徐佳琪, 杨晟. CRISPR相关转座酶及其细菌基因组编辑应用[J]. 生物技术通报, 2023, 39(4): 49-58. |
[12] | 肖小军, 陈明, 韩德鹏, 余跑兰, 郑伟, 肖国滨, 周庆红, 周会汶. 甘蓝型油菜每角果粒数全基因组关联分析[J]. 生物技术通报, 2023, 39(3): 143-151. |
[13] | 张志霞, 李天培, 曾虹, 朱稀贤, 杨天雄, 马斯楠, 黄磊. 冰冷杆菌PG-2的基因组测序及生物信息学分析[J]. 生物技术通报, 2023, 39(3): 290-300. |
[14] | 汪格格, 邱诗蕊, 张琳晗, 杨国伟, 徐小云, 汪爱羚, 曾淑华, 刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究[J]. 生物技术通报, 2023, 39(2): 183-192. |
[15] | 和梦颖, 刘文彬, 林震鸣, 黎尔彤, 汪洁, 金小宝. 一株抗革兰阳性菌的戈登氏菌WA4-43全基因组测序与分析[J]. 生物技术通报, 2023, 39(2): 232-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||