生物技术通报 ›› 2023, Vol. 39 ›› Issue (3): 290-300.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0919
张志霞(), 李天培, 曾虹, 朱稀贤, 杨天雄, 马斯楠, 黄磊()
收稿日期:
2022-07-24
出版日期:
2023-03-26
发布日期:
2023-04-10
通讯作者:
黄磊,男,博士,副教授,研究方向:生物工程;E-mail: huanglei@tjut.edu.cn作者简介:
张志霞,女,硕士研究生,研究方向:微生物发酵;E-mail: 2685944519@qq.com
基金资助:
ZHANG Zhi-xia(), LI Tian-pei, ZENG Hong, ZHU Xi-xian, YANG Tian-xiong, MA Si-nan, HUANG Lei()
Received:
2022-07-24
Published:
2023-03-26
Online:
2023-04-10
摘要:
冰冷杆菌PG-2(Gelidibacter sp.PG-2)是一株能产类胡萝卜素的菌株,为深入研究其产类胡萝卜素的机制,对该菌株进行了全基因组测序。从PG-2中提取类胡萝卜素后通过LC-MS/MS进行定性分析,通过液体紫外全波长扫描计算其含量,基于全基因组测序结果对该菌株产类胡萝卜素的代谢通路进行了预测分析。结果表明,PG-2所产类胡萝卜素为玉米黄质,含量为185.81 μg/g菌体干重,PG-2全基因组大小为3 850 413 bp,GC含量为37.91%,rRNA共计5个,tRNA共计37个,sRNA共计19个,在COG、GO、KEGG数据库分别注释到基因3 401、1 797、1 495个。菌株PG-2含有3个与产类胡萝卜素相关的核心基因crtI、crtZ、lcyB,并对其代谢通路进行了预测。基因组框架测序数据提交至 NCBI 获得 GenBank登录号为JAMJTV000000000。上述结果表明,菌株PG-2具有产类胡萝卜素的能力,推测它产类胡萝卜素与基因crtI、crtZ和lcyB有关。
张志霞, 李天培, 曾虹, 朱稀贤, 杨天雄, 马斯楠, 黄磊. 冰冷杆菌PG-2的基因组测序及生物信息学分析[J]. 生物技术通报, 2023, 39(3): 290-300.
ZHANG Zhi-xia, LI Tian-pei, ZENG Hong, ZHU Xi-xian, YANG Tian-xiong, MA Si-nan, HUANG Lei. Genome Sequencing and Bioinformatics Analysis of Gelidibacter sp. PG-2[J]. Biotechnology Bulletin, 2023, 39(3): 290-300.
名称Name | 数据 Data |
---|---|
原始碱基对Raw bases/bp | 1 218 127 570 |
过滤碱基对Clean bases/bp | 1 174 477 731 |
最长支架 Longest scaffold/bp | 519 035 |
总长度 Total length/bp | 3 850 413 |
GC含量 GC/% | 37.91 |
N50/bp | 257 421 |
基因数目 Gene number | 4 262 |
总长 Total length/bp | 3 850 413 |
GC含量(基因区域)GC%(gene region) | 38.65 |
rRNA | 5 |
16sRNA | 2 |
23sRNA | 1 |
5sRNA | 2 |
tRNA | 37 |
sRNA | 19 |
基因组岛数目 gene iland No. | 9 |
CRISPR-Cas 数目CRISPR-Cas No. | 30 |
表1 PG-2基因组测序和组装
Table 1 Genome sequencing and assembly statistics of strain PG-2
名称Name | 数据 Data |
---|---|
原始碱基对Raw bases/bp | 1 218 127 570 |
过滤碱基对Clean bases/bp | 1 174 477 731 |
最长支架 Longest scaffold/bp | 519 035 |
总长度 Total length/bp | 3 850 413 |
GC含量 GC/% | 37.91 |
N50/bp | 257 421 |
基因数目 Gene number | 4 262 |
总长 Total length/bp | 3 850 413 |
GC含量(基因区域)GC%(gene region) | 38.65 |
rRNA | 5 |
16sRNA | 2 |
23sRNA | 1 |
5sRNA | 2 |
tRNA | 37 |
sRNA | 19 |
基因组岛数目 gene iland No. | 9 |
CRISPR-Cas 数目CRISPR-Cas No. | 30 |
图11 菌株PG-2类胡萝卜素合成通路预测 图中红色部分表示每一步作用的酶
Fig. 11 Pathway prediction of carotenoid synthesis by strain PG-2 The red part of the figure indicates the enzymes of each step
基因 Gene | 酶 Enzyme | 菌名 Bacterial name | 最大分 Max score | 总分 Total score | 覆盖率 Query cover/% | 百分比同一性 Percent identity/% | 长度 Length/aa | 登录号 Accession |
---|---|---|---|---|---|---|---|---|
crtI | 八氢番茄红素脱氢酶家族 Phytoene desaturase family protein | Gelidibacter japonicus Bio 7-1 | 1 008 | 1 008 | 100 | 98.38 | 495 | WP_163516639.1 |
lcyB | 番茄红素环化酶 Lycopene cyclase family protein | Gelidibacter japonicus Bio 7-1 | 704 | 704 | 100 | 98.70 | 384 | WP_163516633.1 |
crtZ | 甾醇去饱和酶家族蛋白 Sterol desaturase family protein | Gelidibacter japonicus Bio 7-1 | 226 | 226 | 100 | 99.17 | 149 | WP_163516635.1 |
表2 PG-2产类胡萝卜素核心基因
Table 2 Carotenoid-producing core genes in PG-2
基因 Gene | 酶 Enzyme | 菌名 Bacterial name | 最大分 Max score | 总分 Total score | 覆盖率 Query cover/% | 百分比同一性 Percent identity/% | 长度 Length/aa | 登录号 Accession |
---|---|---|---|---|---|---|---|---|
crtI | 八氢番茄红素脱氢酶家族 Phytoene desaturase family protein | Gelidibacter japonicus Bio 7-1 | 1 008 | 1 008 | 100 | 98.38 | 495 | WP_163516639.1 |
lcyB | 番茄红素环化酶 Lycopene cyclase family protein | Gelidibacter japonicus Bio 7-1 | 704 | 704 | 100 | 98.70 | 384 | WP_163516633.1 |
crtZ | 甾醇去饱和酶家族蛋白 Sterol desaturase family protein | Gelidibacter japonicus Bio 7-1 | 226 | 226 | 100 | 99.17 | 149 | WP_163516635.1 |
[1] |
Foong LC, Loh CWL, Ng HS, et al. Recent development in the production strategies of microbial carotenoids[J]. World J Microbiol Biotechnol, 2021, 37(1): 12.
doi: 10.1007/s11274-020-02967-3 |
[2] | 邓永平, 段睿, 王晓杰, 等. 微生物源类胡萝卜素的研究进展[J]. 饲料工业, 2020, 41(1): 12-17. |
Deng YP, Duan R, Wang XJ, et al. Research developments of carotenoids from microorganism[J]. Feed Ind, 2020, 41(1): 12-17. | |
[3] |
Hwang CY, Cho ES, Yoon DJ, et al. Genomic and physiological characterization of Metabacillus flavus sp. nov., a novel carotenoid-producing bacilli isolated from Korean marine mud[J]. Microorganisms, 2022, 10(5): 979.
doi: 10.3390/microorganisms10050979 URL |
[4] |
Chu XT, Liu J, Gu WY, et al. Study of the properties of carotenoids and key carotenoid biosynthesis genes from Deinococcus xibeiensis R13[J]. Biotechnol Appl Biochem, 2022, 69(4): 1459-1473.
doi: 10.1002/bab.v69.4 URL |
[5] |
Bowman JP, McCammon SA, Brown JL, et al. Psychroserpens burtonensis gen. nov., sp. nov., and Gelidibacter algens gen. nov., sp. nov., psychrophilic bacteria isolated from Antarctic lacustrine and sea ice habitats[J]. Int J Syst Bacteriol, 1997, 47(3): 670-677.
pmid: 9226898 |
[6] | Macián MC, Pujalte MJ, Márquez MC, et al. Gelidibacter mesophilus sp. nov., a novel marine bacterium in the family Flavobacteriaceae[J]. Int J Syst Evol Microbiol, 2002, 52(pt 4): 1325-1329. |
[7] |
Bowman JP, Nichols DS. Novel members of the family Flavobacteriaceae from Antarctic maritime habitats including Subsaximicrobium wynnwilliamsii gen. nov., sp. nov., Subsaximicrobium saxinquilinus sp. nov., Subsaxibacter broadyi gen. nov., sp. nov., Lacinutrix copepodicola gen. nov., sp. nov., and novel species of the genera Bizionia, Gelidibacter and Gillisia[J]. Int J Syst Evol Microbiol, 2005, 55(Pt 4): 1471-1486.
doi: 10.1099/ijs.0.63527-0 URL |
[8] |
Zhang DC, Margesin R. Gelidibacter sediminis sp. nov., isolated from a sediment sample of the Yellow Sea[J]. Int J Syst Evol Microbiol, 2015, 65(7): 2304-2309.
doi: 10.1099/ijs.0.000256 URL |
[9] |
Doi H, Osawa I. Description of Gelidibacter japonicus sp. nov., isolated from the inland sea(setonaikai)in Japan[J]. Arch Microbiol, 2019, 201(8): 1019-1024.
doi: 10.1007/s00203-019-01668-2 |
[10] |
Pour Hosseini SR, Tavakoli O, Sarrafzadeh MH. Experimental optimization of SC-CO2 extraction of carotenoids from Dunaliella salina[J]. J Supercrit Fluids, 2017, 121: 89-95.
doi: 10.1016/j.supflu.2016.11.006 URL |
[11] | 李祖明, 张猛, 张静, 等. 酸溶辅助超声波法提取类球红细菌类胡萝卜素条件优化[J]. 微生物学杂志, 2014, 34(3): 19-24. |
Li ZM, Zhang M, Zhang J, et al. Conditions optimization of ultrasonic assisted with HCl extraction of carotenoid from Rhodobacter sphaeroides[J]. J Microbiol, 2014, 34(3): 19-24. | |
[12] |
张帝, 张宁, 陈吉刚, 等. 4株海洋红球菌产类胡萝卜素分析及其全基因组测序[J]. 海洋学研究, 2016, 34(4): 78-83.
doi: 10.3969/j.issn.1001-909X.2016.04.010 |
Zhang D, Zhang N, Chen JG, et al. Analysis on caroteniod producing of four marine Rhodococcus and its genome sequence determining[J]. J Mar Sci, 2016, 34(4): 78-83. | |
[13] |
蔡国磊, 陆小凯, 娄水珠, 等. 芽孢杆菌LM基于全基因组的分类鉴定及抑菌原理的研究[J]. 生物技术通报, 2021, 37(8): 176-185.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1303 |
Cai GL, Lu XK, Lou SZ, et al. Classification and identification of Bacillus LM based on whole genome and study on its antibacterial principle[J]. Biotechnol Bull, 2021, 37(8): 176-185. | |
[14] | 肖亦农, 崔艺久, 徐琼, 等. 一种新沼泽红假单胞菌鉴定及其类胡萝卜素含量分析[J]. 科技导报, 2013, 31(13): 58-62. |
Xiao YN, Cui YJ, Xu Q, et al. Identification of Rhodopseudomonas palustris and its analysis for carotenoids[J]. Sci & Technol Rev, 2013, 31(13): 58-62. | |
[15] | 李意涵, 任清, 徐嘉良, 等. 北工商海洋杆菌色素的提取与稳定性的初步研究[J]. 食品科技, 2021, 46(7): 7-13. |
Li YH, Ren Q, Xu JL, et al. Extraction and stability of the Pontibacter beigongshangensis pigment[J]. Food Sci Technol, 2021, 46(7): 7-13. | |
[16] | 汪杰, 孙向阳, 姚红梅, 等. 一株产类胡萝卜素菌株的鉴定和培养条件优化及抗氧化特性分析[J]. 西华大学学报: 自然科学版, 2022, 41(4): 82-89, 97. |
Wang J, Sun XY, Yao HM, et al. Identification of a carotenoid-producing strain and optimization of its culture conditions and analysis of its antioxidant activities[J]. J Xihua Univ Nat Sci Ed, 2022, 41(4): 82-89, 97. | |
[17] | 骆琴, 邓清月, 唐森, 等. 一株固态发酵甘蔗渣产类胡萝卜素脉孢菌的分离鉴定[J]. 中国饲料, 2021(1): 43-47. |
Luo Q, Deng QY, Tang S, et al. Isolation and identification of a strain of carotenoid Neurospora produced from solid-state fermentation sugarcane bagasse[J]. China Feed, 2021(1): 43-47. | |
[18] | 朱丽花, 马延琴, 纪彦宇, 等. 产类胡萝卜素酵母菌的筛选及色素稳定性分析[J]. 中国酿造, 2021, 40(9): 139-144. |
Zhu LH, Ma YQ, Ji YY, et al. Screening of carotenoid-producing yeast and pigment stability analysis[J]. China Brew, 2021, 40(9): 139-144. | |
[19] |
Bao XR, Yang L, Chen LQ, et al. Analysis on pathogenic and virulent characteristics of the Cronobacter sakazakii strain BAA-894 by whole genome sequencing and its demonstration in basic biology science[J]. Microb Pathog, 2017, 109: 280-286.
doi: 10.1016/j.micpath.2017.05.030 URL |
[20] |
Luo RB, Liu BH, Xie YL, et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1(1): 18.
doi: 10.1186/2047-217X-1-18 URL |
[21] | 戴利铭, 李岚岚, 刘一贤, 等. 解淀粉芽孢杆菌生防菌BS-3全基因组测序及生物信息分析[J]. 微生物学通报, 2021, 48(6): 2073-2088. |
Dai LM, Li LL, Liu YX, et al. Whole genome sequencing and genomics analysis of Bacillus amyloliquefaciens BS-3 with biocontrol activity[J]. Microbiol China, 2021, 48(6): 2073-2088. | |
[22] |
Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000[J]. Nucleic Acids Res, 2000, 28(1): 45-48.
doi: 10.1093/nar/28.1.45 pmid: 10592178 |
[23] |
Finn RD, Bateman A, Clements J, et al. Pfam: the protein families database[J]. Nucleic Acids Res, 2014, 42(Database issue): D222-D230.
doi: 10.1093/nar/gkt1223 URL |
[24] |
Jensen LJ, Julien P, Kuhn M, et al. eggNOG: automated construction and annotation of orthologous groups of genes[J]. Nucleic Acids Res, 2008, 36(Database issue): D250-D254.
doi: 10.1093/nar/gkm796 pmid: 17942413 |
[25] |
Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Res, 2000, 28(1): 27-30.
doi: 10.1093/nar/28.1.27 pmid: 10592173 |
[26] |
Setiyono E, Heriyanto, Pringgenies D, et al. Sulfur-containing carotenoids from A marine coral symbiont Erythrobacter flavus strain KJ5[J]. Mar Drugs, 2019, 17(6): 349.
doi: 10.3390/md17060349 URL |
[27] |
Bourdon L, Jensen AA, Kavanagh JM, et al. Microalgal production of Zeaxanthin[J]. Algal Res, 2021, 55: 102266.
doi: 10.1016/j.algal.2021.102266 URL |
[28] | Meléndez-Martínez AJ. An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease[J]. Mol Nutr Food Res, 2019, 63(15): e1801045. |
[29] |
Ram S, Mitra M, Shah F, et al. Bacteria as an alternate biofactory for carotenoid production: a review of its applications, opportunities and challenges[J]. J Funct Foods, 2020, 67: 103867.
doi: 10.1016/j.jff.2020.103867 URL |
[30] | Torpee S, Kantachote D, Sukhoom A, et al. Culture optimization to enhance carotenoid production of a selected purple nonsulfur bacterium and its activity against acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus[J]. Biotechnol Appl Biochem, 2021: 2021 Nov 28. |
[31] |
Patthawaro S, Lomthaisong K, Saejung C. Bioconversion of agro-industrial waste to value-added product lycopene by photosynthetic bacterium Rhodopseudomonas faecalis and its carotenoid composition[J]. Waste Biomass Valorization, 2020, 11(6): 2375-2386.
doi: 10.1007/s12649-018-00571-z |
[32] |
Rodrigues TVD, Teixeira EC, Macedo LP, et al. Agroindustrial byproduct-based media in the production of microbial oil rich in oleic acid and carotenoids[J]. Bioprocess Biosyst Eng, 2022, 45(4): 721-732.
doi: 10.1007/s00449-022-02692-1 |
[33] |
Bo S, Ni X, Guo J, et al. Carotenoid biosynthesis: genome-wide profiling, pathway identification in Rhodotorula glutinis X-20, and high-level production[J]. Front Nutr, 2022, 9: 918240.
doi: 10.3389/fnut.2022.918240 URL |
[34] |
Kim M, Jung DH, Seo DH, et al. Genome analysis of Lactobacillus plantarum subsp. plantarum KCCP11226 reveals a well-conserved C30 carotenoid biosynthetic pathway[J]. 3 Biotech, 2020, 10(4): 150.
doi: 10.1007/s13205-020-2149-y |
[35] | Bowman JP. Draft genome sequence of the psychrophilic gliding species Gelidibacter algens ACAM 536[J]. Genome Announc, 2016, 4(5): e00908-e00916. |
[36] | López GD, Álvarez-Rivera G, Carazzone C, et al. Bacterial carotenoids: extraction, characterization, and applications[J]. Crit Rev Anal Chem, 2021: 2021 Dec 16;1-2021 Dec 1624. |
[37] |
Britton G, Brown DJ, Goodwin TW, et al. The carotenoids of Flavo-bacterium strain R1560[J]. Arch Microbiol, 1977, 113(1-2): 33-37.
pmid: 889385 |
[38] | 梅雪昂, 陈艳, 王瑞钊, 等. 产玉米黄质的人工酵母细胞的构建[J]. 中国生物工程杂志, 2016, 36(8): 64-72. |
Mei XA, Chen Y, Wang RZ, et al. Engineered yeast cell for producing Zeaxanthin[J]. China Biotechnol, 2016, 36(8): 64-72. |
[1] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[2] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[3] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[4] | 郭少华, 毛会丽, 刘征权, 付美媛, 赵平原, 马文博, 李旭东, 关建义. 一株鱼源致病性嗜水气单胞菌XDMG的全基因组测序及比较基因组分析[J]. 生物技术通报, 2023, 39(8): 291-306. |
[5] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[6] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[7] | 和梦颖, 刘文彬, 林震鸣, 黎尔彤, 汪洁, 金小宝. 一株抗革兰阳性菌的戈登氏菌WA4-43全基因组测序与分析[J]. 生物技术通报, 2023, 39(2): 232-242. |
[8] | 张傲洁, 李青云, 宋文红, 颜少慧, 唐爱星, 刘幽燕. 基于苯酚降解的粪产碱杆菌Alcaligenes faecalis JF101的全基因组分析[J]. 生物技术通报, 2023, 39(10): 292-303. |
[9] | 王帅, 吕鸿睿, 张昊, 吴占文, 肖翠红, 孙冬梅. 解磷菌PSB-R全基因组测序鉴定及其解磷特性分析[J]. 生物技术通报, 2023, 39(1): 274-283. |
[10] | 周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127. |
[11] | 田清尹, 岳远征, 申慧敏, 潘多, 杨秀莲, 王良桂. 植物观赏器官中类胡萝卜素代谢调控的研究进展[J]. 生物技术通报, 2022, 38(12): 35-46. |
[12] | 孔谦, 黄文洁, 吴绍文, 李坤, 张名位, 晏石娟. 一种同时测定十种类胡萝卜素的液相色谱方法的建立[J]. 生物技术通报, 2022, 38(11): 80-89. |
[13] | 张泽颖, 范清锋, 邓云峰, 韦廷舟, 周正富, 周建, 王劲, 江世杰. 一株高产脂肪酶菌株WCO-9全基因组测序及比较基因组分析[J]. 生物技术通报, 2022, 38(10): 216-225. |
[14] | 薛清, 杜虹锐, 薛会英, 王译浩, 王暄, 李红梅. 苜蓿滑刃线虫线粒体基因组及其系统发育研究[J]. 生物技术通报, 2021, 37(7): 98-106. |
[15] | 陈体强, 徐晓兰, 石林春, 钟礼义. 紫芝栽培品种‘武芝2号’(‘紫芝S2’)全基因组测序及分析[J]. 生物技术通报, 2021, 37(11): 42-56. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||