生物技术通报 ›› 2023, Vol. 39 ›› Issue (11): 36-43.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0519
收稿日期:
2023-05-30
出版日期:
2023-11-26
发布日期:
2023-12-20
通讯作者:
谢彦杰,教授,研究方向:植物氧化还原信号转导与调控机制;E-mail: yjxie@njau.edu.cn作者简介:
周恒,副研究员,研究方向:植物氧化还原信号转导与调控机制;E-mail: hengzhou@njau.edu.cn
基金资助:
Received:
2023-05-30
Published:
2023-11-26
Online:
2023-12-20
摘要:
干旱、盐害以及极端温度等非生物胁迫是影响植物生长发育的重要因子。植物在遭受胁迫时,活性氧的快速积累导致胞内氧化还原稳态被打破,进一步诱导产生次级氧化胁迫损伤。除了初级非生物胁迫胁迫信号外,植物细胞也需要产生一系列的次级氧化胁迫信号。氧化还原信号的感知与传递在植物氧化胁迫应答过程中发挥重要的作用,其生物化学基础是功能蛋白质发生的氧化还原翻译后修饰,分别又由多种具有氧化还原活性的小分子介导。本文综述了近年来植物氧化还原信号的研究进展,展望了未来的研究方向,以期为研究植物氧化胁迫应答及氧化还原信号转导提供参考。
周恒, 谢彦杰. 植物氧化胁迫信号应答的研究进展[J]. 生物技术通报, 2023, 39(11): 36-43.
ZHOU Heng, XIE Yan-jie. Recent Progress in Oxidative Stress Signaling and Response in Plants[J]. Biotechnology Bulletin, 2023, 39(11): 36-43.
[1] |
Zhu JK. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313-324.
doi: 10.1016/j.cell.2016.08.029 URL |
[2] |
Hancock JT, Veal D. Nitric oxide, other reactive signalling compounds, redox, and reductive stress[J]. J Exp Bot, 2021, 72(3): 819-829.
doi: 10.1093/jxb/eraa331 pmid: 32687173 |
[3] |
Mittler R, Zandalinas SI, Fichman Y, et al. Reactive oxygen species signalling in plant stress responses[J]. Nat Rev Mol Cell Biol, 2022, 23(10): 663-679.
doi: 10.1038/s41580-022-00499-2 |
[4] |
Del Río LA. ROS and RNS in plant physiology: an overview[J]. J Exp Bot, 2015, 66(10): 2827-2837.
doi: 10.1093/jxb/erv099 pmid: 25873662 |
[5] |
Zhou H, Huang JJ, Willems P, et al. Cysteine thiol-based post-translational modification: what do we know about transcription factors?[J]. Trends Plant Sci, 2023, 28(4): 415-428.
doi: 10.1016/j.tplants.2022.11.007 URL |
[6] |
Kolbert Z, Lindermayr C, Loake GJ. The role of nitric oxide in plant biology: current insights and future perspectives[J]. J Exp Bot, 2021, 72(3): 777-780.
doi: 10.1093/jxb/erab013 pmid: 33570126 |
[7] |
Zhang J, Zhou MJ, Zhou H, et al. Hydrogen sulfide, a signaling molecule in plant stress responses[J]. J Integr Plant Biol, 2021, 63(1): 146-160.
doi: 10.1111/jipb.13022 |
[8] |
Noctor G, Foyer CH. Intracellular redox compartmentation and ROS-related communication in regulation and signaling[J]. Plant Physiol, 2016, 171(3): 1581-1592.
doi: 10.1104/pp.16.00346 pmid: 27208308 |
[9] | Dietz KJ, Turkan I, Krieger-Liszkay A. Redox- and reactive oxygen species-dependent signaling into and out of the photosynthesizing chloroplast[J]. Plant Physiol, 2016, 171(3): 1541-1550. |
[10] |
Correa-Aragunde N, Foresi N, Lamattina L. Structure diversity of nitric oxide synthases(NOS): the emergence of new forms in photosynthetic organisms[J]. Front Plant Sci, 2013, 4: 232.
doi: 10.3389/fpls.2013.00232 pmid: 23847637 |
[11] |
Astier J, Gross I, Durner J. Nitric oxide production in plants: an update[J]. J Exp Bot, 2018, 69(14): 3401-3411.
doi: 10.1093/jxb/erx420 pmid: 29240949 |
[12] |
Chamizo-Ampudia A, Sanz-Luque E, Llamas A, et al. Nitrate reductase regulates plant nitric oxide homeostasis[J]. Trends Plant Sci, 2017, 22(2): 163-174.
doi: S1360-1385(16)30201-1 pmid: 28065651 |
[13] |
Gotor C, García I, Aroca Á, et al. Signaling by hydrogen sulfide and cyanide through post-translational modification[J]. J Exp Bot, 2019, 70(16): 4251-4265.
doi: 10.1093/jxb/erz225 pmid: 31087094 |
[14] |
Knuesting J, Scheibe R. Small molecules govern thiol redox switches[J]. Trends Plant Sci, 2018, 23(9): 769-782.
doi: S1360-1385(18)30137-7 pmid: 30149854 |
[15] |
Corpas FJ, González-Gordo S, Rodríguez-Ruiz M, et al. Thiol-based oxidative posttranslational modifications(OxiPTMs)of plant proteins[J]. Plant Cell Physiol, 2022, 63(7): 889-900.
doi: 10.1093/pcp/pcac036 URL |
[16] |
Poole LB, Schöneich C. Introduction: what we do and do not know regarding redox processes of thiols in signaling pathways[J]. Free Radic Biol Med, 2015, 80: 145-147.
doi: 10.1016/j.freeradbiomed.2015.02.005 URL |
[17] |
Sevilla F, Camejo D, Ortiz-Espín A, et al. The thioredoxin/peroxiredoxin/sulfiredoxin system: current overview on its redox function in plants and regulation by reactive oxygen and nitrogen species[J]. J Exp Bot, 2015, 66(10): 2945-2955.
doi: 10.1093/jxb/erv146 pmid: 25873657 |
[18] |
Chen LC, Wu R, Feng J, et al. Transnitrosylation mediated by the non-canonical catalase ROG1 regulates nitric oxide signaling in plants[J]. Dev Cell, 2020, 53(4): 444-457.e5.
doi: S1534-5807(20)30232-X pmid: 32330424 |
[19] |
Kneeshaw S, Gelineau S, Tada Y, et al. Selective protein denitrosylation activity of Thioredoxin-h5 modulates plant Immunity[J]. Mol Cell, 2014, 56(1): 153-162.
doi: 10.1016/j.molcel.2014.08.003 pmid: 25201412 |
[20] |
Zhang TR, Ma MY, Chen T, et al. Glutathione-dependent denitrosation of GSNOR1 promotes oxidative signalling downstream of H2 O2[J]. Plant Cell Environ, 2020, 43(5): 1175-1191.
doi: 10.1111/pce.v43.5 URL |
[21] |
Tian YC, Fan M, Qin ZX, et al. Hydrogen peroxide positively regulates brassinosteroid signaling through oxidation of the BRASSINAZOLE-RESISTANT1 transcription factor[J]. Nat Commun, 2018, 9(1): 1063.
doi: 10.1038/s41467-018-03463-x pmid: 29540799 |
[22] |
Shen J, Zhang J, Zhou MJ, et al. Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling[J]. Plant Cell, 2020, 32(4): 1000-1017.
doi: 10.1105/tpc.19.00826 URL |
[23] |
Wu FH, Chi Y, Jiang ZH, et al. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis[J]. Nature, 2020, 578(7796): 577-581.
doi: 10.1038/s41586-020-2032-3 |
[24] |
Drerup MM, Schlücking K, Hashimoto K, et al. The Calcineurin B-like calcium sensors CBL1 and CBL9 together with their interacting protein kinase CIPK26 regulate the Arabidopsis NADPH oxidase RBOHF[J]. Mol Plant, 2013, 6(2): 559-569.
doi: 10.1093/mp/sst009 URL |
[25] |
Han JP, Köster P, Drerup MM, et al. Fine-tuning of RBOHF activity is achieved by differential phosphorylation and Ca2+ binding[J]. New Phytol, 2019, 221(4): 1935-1949.
doi: 10.1111/nph.2019.221.issue-4 URL |
[26] |
Vogelsang L, Dietz KJ. Plant thiol peroxidases as redox sensors and signal transducers in abiotic stress acclimation[J]. Free Radic Biol Med, 2022, 193(Pt 2): 764-778.
doi: 10.1016/j.freeradbiomed.2022.11.019 URL |
[27] |
Bi GZ, Hu M, Fu L, et al. The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H2O2 that regulates plant immunity through a redox relay[J]. Nat Plants, 2022, 8(10): 1160-1175.
doi: 10.1038/s41477-022-01252-5 |
[28] |
Zhou H, Zhang F, Zhai FC, et al. Rice GLUTATHIONE PEROXIDASE1-mediated oxidation of bZIP68 positively regulates ABA-independent osmotic stress signaling[J]. Mol Plant, 2022, 15(4): 651-670.
doi: 10.1016/j.molp.2021.11.006 URL |
[29] |
Chae HB, Kim MG, Kang CH, et al. Redox sensor QSOX1 regulates plant immunity by targeting GSNOR to modulate ROS generation[J]. Mol Plant, 2021, 14(8): 1312-1327.
doi: 10.1016/j.molp.2021.05.004 pmid: 33962063 |
[30] |
Ji T, Zheng LH, Wu JL, et al. The thioesterase APT1 is a bidirectional-adjustment redox sensor[J]. Nat Commun, 2023, 14(1): 2807.
doi: 10.1038/s41467-023-38464-y pmid: 37198152 |
[31] |
Duan M, Zhang RX, Zhu FG, et al. A lipid-anchored NAC transcription factor is translocated into the nucleus and activates Glyoxalase I expression during drought stress[J]. Plant Cell, 2017, 29(7): 1748-1772.
doi: 10.1105/tpc.17.00044 URL |
[32] |
Liu WC, Song RF, Qiu YM, et al. Sulfenylation of ENOLASE2 facilitates H2O2-conferred freezing tolerance in Arabidopsis[J]. Dev Cell, 2022, 57(15): 1883-1898.e5.
doi: 10.1016/j.devcel.2022.06.012 URL |
[33] |
Liu WC, Song RF, Zheng SQ, et al. Coordination of plant growth and abiotic stress responses by tryptophan synthase β subunit 1 through modulation of tryptophan and ABA homeostasis in Arabidopsis[J]. Mol Plant, 2022, 15(6): 973-990.
doi: 10.1016/j.molp.2022.04.009 URL |
[34] |
Yuan HM, Liu WC, Lu YT. CATALASE2 coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses[J]. Cell Host Microbe, 2017, 21(2): 143-155.
doi: 10.1016/j.chom.2017.01.007 URL |
[35] |
Fu ZW, Feng YR, Gao X, et al. Salt stress-induced chloroplastic hydrogen peroxide stimulates pdTPI sulfenylation and methylglyoxal accumulation[J]. Plant Cell, 2023, 35(5): 1593-1616.
doi: 10.1093/plcell/koad019 URL |
[36] |
Li JG, Fan M, Hua WB, et al. Brassinosteroid and hydrogen peroxide interdependently induce stomatal opening by promoting guard cell starch degradation[J]. Plant Cell, 2020, 32(4): 984-999.
doi: 10.1105/tpc.19.00587 URL |
[37] |
Tian YC, Zhao N, Wang MM, et al. Integrated regulation of periclinal cell division by transcriptional module of BZR1-SHR in Arabidopsis roots[J]. New Phytol, 2022, 233(2): 795-808.
doi: 10.1111/nph.v233.2 URL |
[38] |
Lee ES, Park JH, Wi SD, et al. Redox-dependent structural switch and CBF activation confer freezing tolerance in plants[J]. Nat Plants, 2021, 7(7): 914-922.
doi: 10.1038/s41477-021-00944-8 pmid: 34155371 |
[39] |
Camejo D, Ortiz-Espín A, Lázaro JJ, et al. Functional and structural changes in plant mitochondrial PrxII F caused by NO[J]. J Proteomics, 2015, 119: 112-125.
doi: 10.1016/j.jprot.2015.01.022 pmid: 25682994 |
[40] |
Klupczyńska EA, Dietz KJ, Małecka A, et al. Mitochondrial peroxiredoxin-IIF(PRXIIF)activity and function during seed aging[J]. Antioxidants, 2022, 11(7): 1226.
doi: 10.3390/antiox11071226 URL |
[41] |
He NY, Chen LS, Sun AZ, et al. A nitric oxide burst at the shoot apex triggers a heat-responsive pathway in Arabidopsis[J]. Nat Plants, 2022, 8(4): 434-450.
doi: 10.1038/s41477-022-01135-9 |
[42] |
Ying SB, Yang WJ, Li P, et al. Phytochrome B enhances seed germination tolerance to high temperature by reducing S-nitrosylation of HFR1[J]. EMBO Rep, 2022, 23(10): e54371.
doi: 10.15252/embr.202154371 URL |
[43] |
Liu H, Wang JC, Liu JH, et al. Hydrogen sulfide(H2S)signaling in plant development and stress responses[J]. aBIOTECH, 2021, 2(1): 32-63.
doi: 10.1007/s42994-021-00035-4 |
[44] | Huang JJ, Xie YJ. Hydrogen sulfide signaling in plants[J]. Antioxid Redox Signal, 2023, 10.1089/ars.2023.0267. |
[45] |
Chen SS, Jia HL, Wang XF, et al. Hydrogen sulfide positively regulates abscisic acid signaling through persulfidation of SnRK2.6 in guard cells[J]. Mol Plant, 2020, 13(5): 732-744.
doi: S1674-2052(20)30004-6 pmid: 31958520 |
[46] |
Zhou MJ, Zhang J, Shen J, et al. Hydrogen sulfide-linked persulfidation of ABI4 controls ABA responses through the transactivation of MAPKKK18 in Arabidopsis[J]. Mol Plant, 2021, 14(6): 921-936.
doi: 10.1016/j.molp.2021.03.007 URL |
[47] |
Zhou H, Zhou Y, Zhang F, et al. Persulfidation of nitrate reductase 2 is involved in l-cysteine desulfhydrase-regulated rice drought tolerance[J]. Int J Mol Sci, 2021, 22(22): 12119.
doi: 10.3390/ijms222212119 URL |
[48] |
Laureano-Marín AM, Aroca Á, Esther Pérez-Pérez M, et al. Abscisic acid-triggered persulfidation of the cys protease ATG4 mediates regulation of autophagy by sulfide[J]. Plant Cell, 2020, 32(12): 3902-3920.
doi: 10.1105/tpc.20.00766 URL |
[49] |
Aroca A, Yruela I, Gotor C, et al. Persulfidation of ATG18a regulates autophagy under ER stress in Arabidopsis[J]. Proc Natl Acad Sci USA, 2021, 118(20): e2023604118.
doi: 10.1073/pnas.2023604118 URL |
[50] |
Li JS, Chen SS, Wang XF, et al. Hydrogen sulfide disturbs actin polymerization via S-sulfhydration resulting in stunted root hair growth[J]. Plant Physiol, 2018, 178(2): 936-949.
doi: 10.1104/pp.18.00838 URL |
[51] |
Sun C, Yao GF, Li LX, et al. E3 ligase BRG3 persulfidation delays tomato ripening by reducing ubiquitination of the repressor WRKY71[J]. Plant Physiol, 2023, 192(1): 616-632.
doi: 10.1093/plphys/kiad070 pmid: 36732924 |
[52] |
Yun BW, Feechan A, Yin MH, et al. S-nitrosylation of NADPH oxidase regulates cell death in plant immunity[J]. Nature, 2011, 478(7368): 264-268.
doi: 10.1038/nature10427 |
[53] | Kovacs I, Holzmeister C, Wirtz M, et al. ROS-mediated inhibition of S-nitrosoglutathione reductase contributes to the activation of anti-oxidative mechanisms[J]. Front Plant Sci, 2016, 7: 1669. |
[54] |
Hu JL, Huang XH, Chen LC, et al. Site-specific nitrosoproteomic identification of endogenously S-nitrosylated proteins in Arabidopsis[J]. Plant Physiol, 2015, 167(4): 1731-1746.
doi: 10.1104/pp.15.00026 URL |
[55] |
Aroca A, Benito JM, Gotor C, et al. Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biological processes in Arabidopsis[J]. J Exp Bot, 2017, 68(17): 4915-4927.
doi: 10.1093/jxb/erx294 URL |
[56] |
Huang JJ, Willems P, Wei B, et al. Mining for protein S-sulfenylation in Arabidopsis uncovers redox-sensitive sites[J]. Proc Natl Acad Sci USA, 2019, 116(42): 21256-21261.
doi: 10.1073/pnas.1906768116 URL |
[57] |
Wei B, Willems P, Huang JJ, et al. Identification of sulfenylated cysteines in Arabidopsis thaliana proteins using a disulfide-linked peptide reporter[J]. Front Plant Sci, 2020, 11: 777.
doi: 10.3389/fpls.2020.00777 pmid: 32714340 |
[58] |
Jurado-Flores A, Romero LC, Gotor C. Label-free quantitative proteomic analysis of nitrogen starvation in Arabidopsis root reveals new aspects of H2S signaling by protein persulfidation[J]. Antioxidants, 2021, 10(4): 508.
doi: 10.3390/antiox10040508 URL |
[59] | Jurado-Flores A, Aroca A, Romero LC, et al. Sulfide promotes tolerance to drought through protein persulfidation in Arabidopsis[J]. J Exp Bot, 2023, erad165. doi:10.1093/jxb/erad165. |
[1] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[2] | 王琪, 胡哲, 富薇, 李光哲, 郝林. 伯克霍尔德氏菌GD17对黄瓜幼苗耐干旱的调节[J]. 生物技术通报, 2023, 39(3): 163-175. |
[3] | 赵佳, 赵飞燕, 沈馨, 高广琦, 孙志宏. 乳酸菌抗氧化活性及其应用研究进展[J]. 生物技术通报, 2023, 39(11): 182-190. |
[4] | 徐红云, 张明意. GRAS转录因子AtSCL4负调控拟南芥应答渗透胁迫[J]. 生物技术通报, 2022, 38(6): 129-135. |
[5] | 薛鲜丽, 王静然, 毕杭杭, 王德培. 过表达Spt7对黑曲霉生长及抗逆性影响[J]. 生物技术通报, 2022, 38(5): 112-122. |
[6] | 祖国蔷, 胡哲, 王琪, 李光哲, 郝林. Burkholderia sp. GD17对水稻幼苗镉耐受的调节[J]. 生物技术通报, 2022, 38(4): 153-162. |
[7] | 贾海红, 李冰清. 超氧化物歧化酶翻译后修饰的研究进展[J]. 生物技术通报, 2022, 38(2): 237-244. |
[8] | 李陆萍, 梁大成. 活性氧诱发的植物亚细胞间通讯[J]. 生物技术通报, 2021, 37(5): 165-173. |
[9] | 杨利, 王波, 李文姣, 王兴军, 赵术珍. 干旱胁迫下ROS的产生、清除及信号转导研究进展[J]. 生物技术通报, 2021, 37(4): 194-203. |
[10] | 白谨铭, 赵子翔, 秦嘉晨, 刘鉴辉, 梁爱博. 烟草水提物对果蝇寿命及有关基因转录的影响[J]. 生物技术通报, 2020, 36(3): 162-167. |
[11] | 鲁琳, 杨尚谕, 刘维东, 鲁黎明. 基于转录组测序花烟草响应盐胁迫活性氧清除相关基因的挖掘[J]. 生物技术通报, 2020, 36(12): 42-53. |
[12] | 刘融, 崔凯, 白福恒, 刁其玉. 蛋氨酸调控畜禽氧化应激的研究进展[J]. 生物技术通报, 2020, 36(10): 207-214. |
[13] | 闻远, 夏娟, 戚良华, 刘小伟, 刘晨光, 白凤武. 抗氧化基因过表达提高运动发酵单胞菌糠醛耐受性[J]. 生物技术通报, 2019, 35(8): 85-94. |
[14] | 王琦, 冯静红, 孙占斌, 姜维治, 李世东, 孙漫红, 马桂珍. 氧化胁迫对粉红螺旋聚孢霉生长和产厚垣孢子的影响[J]. 生物技术通报, 2018, 34(4): 168-173. |
[15] | 陈浩宇, 徐瑞涛, 程志翔, 高强, 张健. H2O2对黑曲霉氧化胁迫机理的研究[J]. 生物技术通报, 2018, 34(4): 201-207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||