生物技术通报 ›› 2024, Vol. 40 ›› Issue (1): 24-31.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0786
林鑫焱1,2(), 张传忠2, 戴兵2, 王馨珩2, 刘剑锋1, 温丽3, 徐兴健3, 方军2()
收稿日期:
2023-08-08
出版日期:
2024-01-26
发布日期:
2024-02-06
通讯作者:
方军,男,博士,研究员,研究方向:水稻种质资源发掘与创新利用;E-mail: fangjun@iga.ac.cn作者简介:
林鑫焱,女,硕士研究生,研究方向:植物学;E-mail: 13936685732@163.com
基金资助:
LIN Xin-yan1,2(), ZHANG Chuan-zhong2, DAI Bing2, WANG Xin-heng2, LIU Jian-feng1, WEN Li3, XU Xing-jian3, FANG Jun2()
Received:
2023-08-08
Published:
2024-01-26
Online:
2024-02-06
摘要:
水稻穗发芽是指水稻在收获前如遇连续阴雨天气或高温潮湿环境条件,往往诱导籽粒在穗上发芽的现象。穗发芽导致水稻种子活力和品质下降,给水稻生产带来巨大损失。对于水稻抗穗发芽育种,除了扩大对穗发芽突变体的筛选外,挖掘和克隆一些控制穗发芽的新基因并解析其穗发芽调控机制,是水稻抗穗发芽育种的重要工作。穗发芽过程中,水稻的淀粉酶活性增强、可溶性糖含量升高,且水稻籽粒中植物激素 ABA 和 GA 的含量及二者的平衡是决定穗发芽的关键。OsVP1等一些关键基因通过ABA信号通路控制水稻种子休眠,GA则可通过激活GA相关转录因子等调控种子萌发。本文从水稻穗发芽的内部生理因素及环境条件、水稻穗发芽的遗传机制、水稻穗发芽的分子机制和水稻穗发芽的性状改良这四方面进行综述,以期阐述穗发芽的整体调控机制,为水稻抗穗发芽品种的选育提供理论参考。
林鑫焱, 张传忠, 戴兵, 王馨珩, 刘剑锋, 温丽, 徐兴健, 方军. 水稻穗发芽遗传与分子机制的研究进展[J]. 生物技术通报, 2024, 40(1): 24-31.
LIN Xin-yan, ZHANG Chuan-zhong, DAI Bing, WANG Xin-heng, LIU Jian-feng, WEN Li, XU Xing-jian, FANG Jun. Advances in Genetic and Molecular Mechanisms of Pre-harvest Sprouting in Rice[J]. Biotechnology Bulletin, 2024, 40(1): 24-31.
图1 参与水稻种子休眠与萌发调控中多种激素介导的转录模块的工作模型 虚线表示间接或多步骤的调节;箭头代表正向调节;平箭头代表负向调节
Fig. 1 Working model for the hormone-mediated transcriptional module in the regulation of rice seed dormancy and germination. Dashed lines indicate indirect or multistep regulation; arrowheads indicate positive regulation; and flat-ended lines indicate negative regulation. ABA: Abscisic acid; GA: gibberellin; JA: jasmonic acid; PYR/PYL/RCAR: pyrabactin resistance/pyrabactin-like/regulatory components of ABA receptors; PP2C: protein phosphatase 2C; SnRK2: SNF1-related protein kinase2; bZIP72: bZIP transcription factor; WRKY: WRKY transcription factor; XERICO: a RING-H2 zinc finger E3 ubiquitin ligase; GAMYB: GA regulated MYB transcriptional regulator; DELLA: DELLA protein; MFT: MOTHER OF FT AND TF1; DOG1: DELAY OF GERMINATION 1; ABI4: ABA INSENSITIVE 4;ABI5: ABA INSENSITIVE 5; ABI3: ABA INSENSITIVE 3; VP1: VIVIPAROUS 1; BR: brassinosteroid; BRI1: BR-insensitive 1; BZR1: brassinazole-resistant 1; RAmy3D: alpha-amylase isozyme 3D. RAmy1A: alpha-amylase 1A
[1] | 张琪, 贾俊婷, 张爱霞, 等. 水稻穗发芽研究进展[J]. 广东农业科学, 2022, 49(11): 128-137. |
Zhang Q, Jia JT, Zhang AX, et al. Research progress in pre-harvest sprouting of rice[J]. Guangdong Agric Sci, 2022, 49(11): 128-137. | |
[2] | 杨浚, 陆建飞, 俞炳杲, 等. 水稻穗发芽与籽粒内可溶性糖和α-淀粉酶活性的品种差异[J]. 南京农业大学学报, 1991, 14(1): 17-21. |
Yang J, Lu JF, Yu BG, et al. Soluble sugar level and alpha-amylase activity in grains of some rice varieties with distinguishable viviparity during grain developing[J]. J Nanjing Agric Univ, 1991, 14(1): 17-21. | |
[3] | 王娟, 袁俊, 洪彬, 等. 杂交稻制种过程中穗发芽生理生化特性的分析[J]. 分子植物育种, 2019, 17(19): 6469-6474. |
Wang J, Yuan J, Hong B, et al. Study on physiological and biochemical characteristics of PHS in hybrid rice seed production[J]. Mol Plant Breed, 2019, 17(19): 6469-6474. | |
[4] |
Hu QJ, Lin C, Guan YJ, et al. Inhibitory effect of eugenol on seed germination and pre-harvest sprouting of hybrid rice(Oryza sativa L.)[J]. Sci Rep, 2017, 7(1): 5295.
doi: 10.1038/s41598-017-04104-x |
[5] | 江玲, 万建民. 植物激素ABA和GA调控种子休眠和萌发的研究进展[J]. 江苏农业学报, 2007, 23(4): 360-365. |
Jiang L, Wan JM. Advances in seed dormancy and germination regulated by plant hormones ABA and GA[J]. Jiangsu J Agric Sci, 2007, 23(4): 360-365. | |
[6] |
Fang J, Chu CC. Abscisic acid and the pre-harvest sprouting in cereals[J]. Plant Signal Behav, 2008, 3(12): 1046-1048.
doi: 10.4161/psb.3.12.6606 pmid: 19513237 |
[7] |
Chen Y, Xiang ZP, Liu M, et al. ABA biosynthesis gene OsNCED3 contributes to preharvest sprouting resistance and grain development in rice[J]. Plant Cell Environ, 2023, 46(4): 1384-1401.
doi: 10.1111/pce.14480 URL |
[8] |
Wang YF, Hou YX, Qiu JH, et al. Abscisic acid promotes jasmonic acid biosynthesis via a ‘SAPK10-bZIP72-AOC’ pathway to synergistically inhibit seed germination in rice(Oryza sativa)[J]. New Phytol, 2020, 228(4): 1336-1353.
doi: 10.1111/nph.v228.4 URL |
[9] |
Wang X, Zou BH, Shao QL, et al. Natural variation reveals that OsSAP16 controls low-temperature germination in rice[J]. J Exp Bot, 2018, 69(3): 413-421.
doi: 10.1093/jxb/erx413 pmid: 29237030 |
[10] |
Yoshida H, Hirano K, Yano K, et al. Genome-wide association study identifies a gene responsible for temperature-dependent rice germination[J]. Nat Commun, 2022, 13(1): 5665.
doi: 10.1038/s41467-022-33318-5 pmid: 36175401 |
[11] | 袁仁长. 防止水稻制种穗发芽的几项措施[J]. 种子世界, 1986(6): 17. |
Yuan RC. Several measures to prevent panicle germination in rice seed production[J]. Seed World, 1986(6): 17. | |
[12] |
董袁袁, 徐恒, 张华, 等. 水稻种子成熟后期高湿环境下种子休眠相关基因的表达[J]. 浙江农业学报, 2022, 34(6): 1103-1113.
doi: 10.3969/j.issn.1004-1524.2022.06.01 |
Dong YY, Xu H, Zhang H, et al. Dynamic profile of genes related to seed dormancy under high humidity condition during late stage of rice grain filling[J]. Acta Agric Zhejiangensis, 2022, 34(6): 1103-1113.
doi: 10.3969/j.issn.1004-1524.2022.06.01 |
|
[13] |
Li W, Xu L, Bai XF, et al. Quantitative trait loci for seed dormancy in rice[J]. Euphytica, 2011, 178(3): 427-435.
doi: 10.1007/s10681-010-0327-4 URL |
[14] | 沈又佳, 刘世家, 吴兆苏. 杂种小麦抗穗发芽性的遗传研究[J]. 南京农业大学学报, 1996, 19(2): 1-5. |
Shen YJ, Liu SJ, Wu ZS. A genetic study on pre-harvest sprouting in hybyid wheat[J]. J Nanjing Agric Univ, 1996, 19(2): 1-5. | |
[15] |
Dong YJ, Tsuzuki E, Kamiunten H, et al. Identification of quantitative trait loci associated with pre-harvest sprouting resistance in rice(Oryza sativa L.)[J]. Field Crops Res, 2003, 81(2/3): 133-139.
doi: 10.1016/S0378-4290(02)00217-4 URL |
[16] | 陈海生, 陶龙兴, 王熹, 等. 水稻穗芽相关性状的QTL定位[J]. 中国水稻科学, 2006, 20(3): 253-258. |
Chen HS, Tao LX, Wang X, et al. Identification of QTL associated with pre-harvest sprouting traits in rice[J]. Chin J Rice Sci, 2006, 20(3): 253-258. | |
[17] |
Gao FY, Ren GJ, Lu XJ, et al. QTL analysis for resistance to preharvest sprouting in rice(Oryza sativa)[J]. Plant Breed, 2008, 127(3): 268-273.
doi: 10.1111/pbr.2008.127.issue-3 URL |
[18] |
Hori K, Sugimoto K, Nonoue Y, et al. Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars[J]. Theor Appl Genet, 2010, 120(8): 1547-1557.
doi: 10.1007/s00122-010-1275-z pmid: 20145904 |
[19] | 杨锟, 尚菲, 陈露露, 等. 水稻穗发芽性状的QTL定位[J]. 扬州大学学报: 农业与生命科学版, 2019, 40(3): 16-21. |
Yang K, Shang F, Chen LL, et al. QTL mapping for pre-harvest sprouting traits in rice[J]. J Yangzhou Univ Agric Life Sci Ed, 2019, 40(3): 16-21. | |
[20] |
Cheon KS, Won YJ, Jeong YM, et al. QTL mapping for pre-harvest sprouting resistance in japonica rice varieties utilizing genome re-sequencing[J]. Mol Genet Genomics, 2020, 295(5): 1129-1140.
doi: 10.1007/s00438-020-01688-4 |
[21] |
Wang Q, Lin QB, Wu T, et al. OsDOG1L-3 regulates seed dormancy through the abscisic acid pathway in rice[J]. Plant Sci, 2020, 298: 110570.
doi: 10.1016/j.plantsci.2020.110570 URL |
[22] |
Wang J, Deng QW, Li YH, et al. Transcription factors Rc and OsVP 1 coordinately regulate preharvest sprouting tolerance in red pericarp rice[J]. J Agric Food Chem, 2020, 68(50): 14748-14757.
doi: 10.1021/acs.jafc.0c04748 URL |
[23] |
Chen WQ, Wang W, Lyu YS, et al. OsVP1 activates Sdr4 expression to control rice seed dormancy via the ABA signaling pathway[J]. Crop J, 2021, 9(1): 68-78.
doi: 10.1016/j.cj.2020.06.005 URL |
[24] |
Zhao B, Zhang H, Chen TX, et al. Sdr4 dominates pre-harvest sprouting and facilitates adaptation to local climatic condition in Asian cultivated rice[J]. J Integr Plant Biol, 2022, 64(6): 1246-1263.
doi: 10.1111/jipb.v64.6 URL |
[25] |
Du L, Xu F, Fang J, et al. Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice[J]. Plant J, 2018, 95(3): 545-556.
doi: 10.1111/tpj.2018.95.issue-3 URL |
[26] |
Fang J, Chai CL, Qian Q, et al. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice[J]. Plant J, 2008, 54(2): 177-189.
doi: 10.1111/tpj.2008.54.issue-2 URL |
[27] |
Xu F, Tang JY, Gao SP, et al. Control of rice pre-harvest sprouting by glutaredoxin-mediated abscisic acid signaling[J]. Plant J, 2019, 100(5): 1036-1051.
doi: 10.1111/tpj.v100.5 URL |
[28] |
Xu F, Tang JY, Wang SX, et al. Antagonistic control of seed dormancy in rice by two bHLH transcription factors[J]. Nat Genet, 2022, 54(12): 1972-1982.
doi: 10.1038/s41588-022-01240-7 pmid: 36471073 |
[29] |
Fu K, Song WH, Chen C, et al. Improving pre-harvest sprouting resistance in rice by editing OsABA8ox using CRISPR/Cas9[J]. Plant Cell Rep, 2022, 41(10): 2107-2110.
doi: 10.1007/s00299-022-02917-3 pmid: 35976402 |
[30] |
Zhou CL, Lin QB, Lan J, et al. WRKY transcription factor OsWRKY29 represses seed dormancy in rice by weakening abscisic acid response[J]. Front Plant Sci, 2020, 11: 691.
doi: 10.3389/fpls.2020.00691 URL |
[31] |
Jin J, Xiong LL, Gray JE, et al. Two awn-development-related peptides, GAD1 and OsEPFL2, promote seed dispersal and germination in rice[J]. Mol Plant, 2023, 16(3): 485-488.
doi: 10.1016/j.molp.2022.12.011 URL |
[32] |
Gubler F, Millar AA, Jacobsen JV. Dormancy release, ABA and pre-harvest sprouting[J]. Curr Opin Plant Biol, 2005, 8(2): 183-187.
doi: 10.1016/j.pbi.2005.01.011 pmid: 15752999 |
[33] |
Tuan PA, Kumar R, Rehal PK, et al. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals[J]. Front Plant Sci, 2018, 9: 668.
doi: 10.3389/fpls.2018.00668 pmid: 29875780 |
[34] |
Yaish MW, El-Kereamy A, Zhu T, et al. The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin i n rice[J]. PLoS Genet, 2010, 6(9): e1001098.
doi: 10.1371/journal.pgen.1001098 URL |
[35] |
Kobayashi Y, Murata M, Minami H, et al. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors[J]. Plant J, 2005, 44(6): 939-949.
doi: 10.1111/j.1365-313X.2005.02583.x pmid: 16359387 |
[36] |
Kobayashi Y, Yamamoto S, Minami H, et al. Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid[J]. Plant Cell, 2004, 16(5): 1163-1177.
doi: 10.1105/tpc.019943 pmid: 15084714 |
[37] |
Xiong M, Yu JW, Wang JD, et al. Brassinosteroids regulate rice seed germination through the BZR1-RAmy3D transcriptional module[J]. Plant Physiol, 2022, 189(1): 402-418.
doi: 10.1093/plphys/kiac043 pmid: 35139229 |
[1] | 王子颖, 龙晨洁, 范兆宇, 张蕾. 利用酵母双杂交系统筛选水稻中与OsCRK5互作蛋白[J]. 生物技术通报, 2023, 39(9): 117-125. |
[2] | 黄小龙, 孙贵连, 马丹丹, 闫慧清. 水稻幼苗酵母单杂文库构建及LAZY1上游调控因子筛选[J]. 生物技术通报, 2023, 39(9): 126-135. |
[3] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
[4] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[5] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[6] | 李宇, 李素贞, 陈茹梅, 卢海强. 植物bHLH转录因子调控铁稳态的研究进展[J]. 生物技术通报, 2023, 39(7): 26-36. |
[7] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[8] | 李怡君, 吴晨晨, 李睿, 王喆, 何山文, 韦善君, 张晓霞. 水稻内生细菌新资源分离培养方案探究[J]. 生物技术通报, 2023, 39(4): 201-211. |
[9] | 卢振万, 李雪琪, 黄金光, 周焕斌. 利用胞嘧啶碱基编辑技术创制耐草甘膦水稻[J]. 生物技术通报, 2023, 39(2): 63-69. |
[10] | 杨茂, 林宇丰, 戴阳朔, 潘素君, 彭伟业, 严明雄, 李魏, 王冰, 戴良英. OsDIS1通过抗氧化途径负调控水稻耐旱性[J]. 生物技术通报, 2023, 39(2): 88-95. |
[11] | 蒋铭轩, 李康, 罗亮, 刘建祥, 芦海平. 植物表达外源蛋白研究进展及展望[J]. 生物技术通报, 2023, 39(11): 110-122. |
[12] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
[13] | 陈光, 李佳, 杜瑞英, 王旭. 水稻盐敏感突变体ss2的鉴定与基因功能分析[J]. 生物技术通报, 2022, 38(9): 158-166. |
[14] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[15] | 黄婧, 朱亮, 薛蓬勃, 付强. 水稻叶和籽粒镉积累机制及QTL定位研究[J]. 生物技术通报, 2022, 38(8): 118-126. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||