生物技术通报 ›› 2024, Vol. 40 ›› Issue (5): 58-65.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1166
收稿日期:
2023-12-10
出版日期:
2024-05-26
发布日期:
2024-06-13
通讯作者:
袁明波,男,硕士,助教,研究方向:表观遗传学;E-mail: 1778253725@qq.com作者简介:
袁明波,男,硕士,助教,研究方向:表观遗传学;E-mail: 1778253725@qq.com
基金资助:
YUAN Ming-bo1,2,3(), YE Guo-hua1, YANG Dan1, SONG Dong-xue1
Received:
2023-12-10
Published:
2024-05-26
Online:
2024-06-13
摘要:
DNA甲基化是一种重要的表观遗传修饰,在动植物生长发育、疾病发生、基因表达调控等方面发挥着关键作用。临床上,DNA甲基化肿瘤标志物可以作为肿瘤的诊断、预后和治疗的生物标志物。DNA甲基化的准确检测对于阐明生物生长发育、疾病发生等生命机理具有重要意义。DNA甲基化测序技术是研究DNA甲基化的有力工具,被广泛应用于DNA甲基化在基因组上的定位。近年来,为了更好地检测DNA甲基化位点信息,科学家提出了一系列DNA甲基化高通量测序技术方法,提高了测序检测灵敏度,降低了测序成本和实验花费,显著推动了表观基因组学的发展。本文综述了一系列DNA甲基化测序技术方法,重点介绍了WGBS、TAPS、EM-seq三种测序技术的技术原理及其应用场景,并介绍了在单细胞水平上定位DNA甲基化的测序方法,最后展望其未来发展的方向。
袁明波, 叶国华, 杨丹, 宋冬雪. DNA甲基化测序技术研究进展[J]. 生物技术通报, 2024, 40(5): 58-65.
YUAN Ming-bo, YE Guo-hua, YANG Dan, SONG Dong-xue. Research Progress in DNA Methylation Sequencing Technology[J]. Biotechnology Bulletin, 2024, 40(5): 58-65.
方法 Method | DNA片段化 DNA framentation | 酶氧化 Enzymatic oxidation | 强酸强碱Strong acids and alkalis | 脱氨方式 Deamination method | 扩增方式 Amplification method | 文库丰富度 Library richness | 数据分析软件 Data analysis software |
---|---|---|---|---|---|---|---|
WGBS | 亚硫酸氢盐打断/超声打断 | 不使用 | 使用 | 亚硫酸氢盐 | PCR | 低 | Bismark & BWAMeth |
TAPS | 超声打断 | TET1氧化 | 不使用 | 吡啶硼烷 | PCR | 高 | asTair |
EM-seq | 超声打断 | TET2氧化 | 不使用 | APOBEC3A脱氨酶 | PCR | 低 | Bismark & BWAMeth |
表1 三种技术的实验流程比较
Table 1 Comparison of experimental procedures of three technologies
方法 Method | DNA片段化 DNA framentation | 酶氧化 Enzymatic oxidation | 强酸强碱Strong acids and alkalis | 脱氨方式 Deamination method | 扩增方式 Amplification method | 文库丰富度 Library richness | 数据分析软件 Data analysis software |
---|---|---|---|---|---|---|---|
WGBS | 亚硫酸氢盐打断/超声打断 | 不使用 | 使用 | 亚硫酸氢盐 | PCR | 低 | Bismark & BWAMeth |
TAPS | 超声打断 | TET1氧化 | 不使用 | 吡啶硼烷 | PCR | 高 | asTair |
EM-seq | 超声打断 | TET2氧化 | 不使用 | APOBEC3A脱氨酶 | PCR | 低 | Bismark & BWAMeth |
[1] | Guo HS, Zhu P, Yan LY, et al. The DNA methylation landscape of human early embryos[J]. Nature, 2014, 511(7511): 606-610. |
[2] |
Yang QW, Ali M, Treviño LS, et al. Developmental reprogramming of myometrial stem cells by endocrine disruptor linking to risk of uterine fibroids[J]. Cell Mol Life Sci, 2023, 80(9): 274.
doi: 10.1007/s00018-023-04919-0 pmid: 37650943 |
[3] |
Klutstein M, Nejman D, Greenfield R, et al. DNA methylation in cancer and aging[J]. Cancer Research, 2016, 76(12):3446-3450.
doi: 10.1158/0008-5472.CAN-15-3278 pmid: 27256564 |
[4] | Vasanthakumar A, Godley LA. 5-hydroxymethylcytosine in cancer: significance in diagnosis and therapy[J]. Cancer Genet, 2015, 208(5): 167-177. |
[5] |
Seale K, Horvath S, Teschendorff A, et al. Making sense of the ageing methylome[J]. Nat Rev Genet, 2022, 23(10): 585-605.
doi: 10.1038/s41576-022-00477-6 pmid: 35501397 |
[6] | He L, Huang H, Bradai M, et al. DNA methylation-free Arabidopsis reveals crucial roles of DNA methylation in regulating gene expression and development[J]. Nat Commun, 2022, 13(1): 1335. |
[7] | Ma YZ, Min L, Wang MJ, et al. Disrupted genome methylation in response to high temperature has distinct affects on microspore abortion and anther indehiscence[J]. Plant Cell, 2018, 30(7): 1387-1403. |
[8] |
Takahashi Y, Morales Valencia M, Yu Y, et al. Transgenerational inheritance of acquired epigenetic signatures at CpG islands in mice[J]. Cell, 2023, 186(4): 715-731.e19.
doi: 10.1016/j.cell.2022.12.047 pmid: 36754048 |
[9] | Zhang HM, Lang ZB, Zhu JK. Dynamics and function of DNA methylation in plants[J]. Nat Rev Mol Cell Biol, 2018, 19(8): 489-506. |
[10] |
Frommer M, McDonald LE, Millar DS, et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands[J]. Proc Natl Acad Sci USA, 1992, 89(5): 1827-1831.
doi: 10.1073/pnas.89.5.1827 pmid: 1542678 |
[11] |
Meissner A, Gnirke A, Bell GW, et al. Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis[J]. Nucleic Acids Res, 2005, 33(18): 5868-5877.
doi: 10.1093/nar/gki901 pmid: 16224102 |
[12] |
Weber M, Davies JJ, Wittig D, et al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells[J]. Nat Genet, 2005, 37(8): 853-862.
pmid: 16007088 |
[13] | Lister R, Pelizzola M, Dowen RH, et al. Human DNA methylomes at base resolution show widespread epigenomic differences[J]. Nature, 2009, 462(7271): 315-322. |
[14] |
Booth MJ, Branco MR, Ficz G, et al. Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution[J]. Science, 2012, 336(6083): 934-937.
doi: 10.1126/science.1220671 pmid: 22539555 |
[15] |
Yu M, Hon GC, Szulwach KE, et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome[J]. Cell, 2012, 149(6): 1368-1380.
doi: 10.1016/j.cell.2012.04.027 pmid: 22608086 |
[16] | Schutsky EK, DeNizio JE, Hu P, et al. Nondestructive, base-resolution sequencing of 5-hydroxymethylcytosine using a DNA deaminase[J]. Nat Biotechnol, 2018. DOI: 10.1038/nbt.4204. |
[17] |
Liu YB, Siejka-Zielińska P, Velikova G, et al. Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution[J]. Nat Biotechnol, 2019, 37(4): 424-429.
doi: 10.1038/s41587-019-0041-2 pmid: 30804537 |
[18] |
Vaisvila R, Chaithanya Ponnaluri VK, Sun ZY, et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA[J]. Genome Res, 2021, 31(7): 1280-1289.
doi: 10.1101/gr.266551.120 pmid: 34140313 |
[19] | Gao XF, Song Y, Wu JL, et al. Iron-dependent epigenetic modulation promotes pathogenic T cell differentiation in lupus[J]. J Clin Invest, 2022, 132(9): e152345. |
[20] | Mazid MA, Ward C, Luo ZW, et al. Rolling back human pluripotent stem cells to an eight-cell embryo-like stage[J]. Nature, 2022, 605(7909): 315-324. |
[21] | Liang WW, Lu RJH, Jayasinghe RG, et al. Integrative multi-omic cancer profiling reveals DNA methylation patterns associated with therapeutic vulnerability and cell-of-origin[J]. Cancer Cell, 2023, 41(9): 1567-1585.e7. |
[22] |
Heyn H, Li N, Ferreira HJ, et al. Distinct DNA methylomes of newborns and centenarians[J]. Proc Natl Acad Sci USA, 2012, 109(26): 10522-10527.
doi: 10.1073/pnas.1120658109 pmid: 22689993 |
[23] | Thürmann L, Klös M, Mackowiak SD, et al. Global hypomethylation in childhood asthma identified by genome-wide DNA-methylation sequencing preferentially affects enhancer regions[J]. Allergy, 2023, 78(6): 1489-1506. |
[24] | Zheng GH, Hu SQ, Cheng SM, et al. Factor of DNA methylation 1 affects woodland strawberry plant stature and organ size via DNA methylation[J]. Plant Physiol, 2023, 191(1): 335-351. |
[25] |
Tahiliani M, Koh KP, Shen YH, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1[J]. Science, 2009, 324(5929): 930-935.
doi: 10.1126/science.1170116 pmid: 19372391 |
[26] |
Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine[J]. Science, 2011, 333(6047): 1300-1303.
doi: 10.1126/science.1210597 pmid: 21778364 |
[27] | Siejka-Zielińska P, Cheng JF, Jackson F, et al. Cell-free DNA TAPS provides multimodal information for early cancer detection[J]. Sci Adv, 2021, 7(36): eabh0534. |
[28] |
Liu YB, Cheng JF, Siejka-Zielińska P, et al. Accurate targeted long-read DNA methylation and hydroxymethylation sequencing with TAPS[J]. Genome Biol, 2020, 21(1): 54.
doi: 10.1186/s13059-020-01969-6 pmid: 32127008 |
[29] |
Wang T, Fowler JM, Liu L, et al. Direct enzymatic sequencing of 5-methylcytosine at single-base resolution[J]. Nat Chem Biol, 2023, 19(8): 1004-1012.
doi: 10.1038/s41589-023-01318-1 pmid: 37322153 |
[30] | Hu LL, Lu JY, Cheng JD, et al. Structural insight into substrate preference for TET-mediated oxidation[J]. Nature, 2015, 527(7576): 118-122. |
[31] | Xiong J, Chen KK, Xie NB, et al. Bisulfite-free and single-base resolution detection of epigenetic DNA modification of 5-methylcytosine by methyltransferase-directed labeling with APOBEC3A deamination sequencing[J]. Anal Chem, 2022, 94(44): 15489-15498. |
[32] | Feng SH, Zhong ZH, Wang M, et al. Efficient and accurate determination of genome-wide DNA methylation patterns in Arabidopsis thaliana with enzymatic methyl sequencing[J]. Epigenetics Chromatin, 2020, 13(1): 42. |
[33] | Trinidad EM, Vidal E, Coronado E, et al. Liquidhope: methylome and genomic profiling from very limited quantities of plasma-derived DNA[J]. Brief Bioinform, 2023, 24(1): bbac575. |
[34] | Trinidad EM, Juan-Ribelles A, Pisano G, et al. Evaluation of circulating tumor DNA by electropherogram analysis and methylome profiling in high-risk neuroblastomas[J]. Front Oncol, 2023, 13: 1037342. |
[35] | Guo P, Zheng HL, Li YH, et al. Hepatocellular carcinoma detection via targeted enzymatic methyl sequencing of plasma cell-free DNA[J]. Clin Epigenetics, 2023, 15(1): 2. |
[36] | https://www.neb.cn/zh-cn/-/media/nebus/files/application-notes/technote_nebnext_enzymatic_methyl-seq.pdf?rev=015e017f782a4bc9b50b61f1b0f3c807 |
[37] |
Williams CJ, Dai DW, Tran KA, et al. Dynamic DNA methylation turnover in gene bodies is associated with enhanced gene expression plasticity in plants[J]. Genome Biol, 2023, 24(1): 227.
doi: 10.1186/s13059-023-03059-9 pmid: 37828516 |
[38] | Navin NE. Delineating cancer evolution with single-cell sequencing[J]. Sci Transl Med, 2015, 7(296): 296fs29. |
[39] |
Farlik M, Sheffield NC, Nuzzo A, et al. Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics[J]. Cell Rep, 2015, 10(8): 1386-1397.
doi: 10.1016/j.celrep.2015.02.001 pmid: 25732828 |
[40] |
Angermueller C, Clark SJ, Lee HJ, et al. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity[J]. Nat Methods, 2016, 13(3): 229-232.
doi: 10.1038/nmeth.3728 pmid: 26752769 |
[41] | Pott S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells[J]. eLife, 2017, 6: e23203. |
[42] |
Mulqueen RM, Pokholok D, Norberg SJ, et al. Highly scalable generation of DNA methylation profiles in single cells[J]. Nat Biotechnol, 2018, 36(5): 428-431.
doi: 10.1038/nbt.4112 pmid: 29644997 |
[43] |
Luo CY, Rivkin A, Zhou JT, et al. Robust single-cell DNA methylome profiling with snmC-seq2[J]. Nat Commun, 2018, 9(1): 3824.
doi: 10.1038/s41467-018-06355-2 pmid: 30237449 |
[44] |
Clark SJ, Argelaguet R, Kapourani CA, et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells[J]. Nat Commun, 2018, 9(1): 781.
doi: 10.1038/s41467-018-03149-4 pmid: 29472610 |
[45] |
Bian SH, Hou Y, Zhou X, et al. Single-cell multiomics sequencing and analyses of human colorectal cancer[J]. Science, 2018, 362(6418): 1060-1063.
doi: 10.1126/science.aao3791 pmid: 30498128 |
[46] |
Guo F, Li L, Li JY, et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells[J]. Cell Res, 2017, 27(8): 967-988.
doi: 10.1038/cr.2017.82 pmid: 28621329 |
[47] |
Gu C, Liu SL, Wu QH, et al. Integrative single-cell analysis of transcriptome, DNA methylome and chromatin accessibility in mouse oocytes[J]. Cell Res, 2019, 29(2): 110-123.
doi: 10.1038/s41422-018-0125-4 pmid: 30560925 |
[48] | Han YN, Zheleznyakova GY, Marincevic-Zuniga Y, et al. Comparison of EM-seq and PBAT methylome library methods for low-input DNA[J]. Epigenetics, 2022, 17(10): 1195-1204. |
[49] | Cao YL, Bai YL, Yuan TJ, et al. Single-cell bisulfite-free 5mC and 5hmC sequencing with high sensitivity and scalability[J]. Proc Natl Acad Sci U S A, 2023, 120(49): e2310367120. |
[50] |
Li J, Liang Y, Fan J, et al. DNA methylation subtypes guiding prognostic assessment and linking to responses the DNA methyltransferase inhibitor SGI-110 in urothelial carcinoma[J]. BMC Med, 2022, 20(1): 222.
doi: 10.1186/s12916-022-02426-w pmid: 35843958 |
[51] | Ka-Yue Chow L, Lai-Shun Chung D, Tao LH, et al. Epigenomic landscape study reveals molecular subtypes and EBV-associated regulatory epigenome reprogramming in nasopharyngeal carcinoma[J]. EBioMedicine, 2022, 86: 104357. |
[52] | Lee YH, Ren DA, Jeon B, et al. S-Adenosylmethionine: more than just a methyl donor[J]. Nat Prod Rep, 2023, 40(9): 1521-1549. |
[53] |
Wang T, Kohli RM. Discovery of an unnatural DNA modification derived from a natural secondary metabolite[J]. Cell Chem Biol, 2021, 28(1): 97-104.e4.
doi: 10.1016/j.chembiol.2020.09.006 pmid: 33053370 |
[1] | 张坤, 闫畅, 田新朋. 微生物单细胞分离方法研究进展[J]. 生物技术通报, 2023, 39(9): 1-11. |
[2] | 吴昊, 刘紫微, 郑颖, 戴雅文, 时权. 单细胞水平解析人牙龈间充质干细胞异质性[J]. 生物技术通报, 2023, 39(7): 325-332. |
[3] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[4] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[5] | 雷彩荣, 郭晓鹏, 柴冉, 张苗苗, 任军乐, 陆栋. 组学技术在重离子辐射微生物诱变育种中的应用[J]. 生物技术通报, 2023, 39(5): 54-62. |
[6] | 张淼, 杨露露, 贾岩龙, 王天云. DNA甲基化和组蛋白甲基化修饰的表观遗传调控作用研究进展[J]. 生物技术通报, 2022, 38(7): 23-30. |
[7] | 王晨晨, 张凡丽, 陈珮琪, 翁思瑶, 王慧芳, 崔小娟. 哺乳动物DNA甲基转移酶DNMT1和DNMT3结构与功能的研究进展[J]. 生物技术通报, 2022, 38(7): 31-39. |
[8] | 熊和丽, 沙茜, 刘韶娜, 相德才, 张斌, 赵智勇. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3): 226-233. |
[9] | 寇佳怡, 王玉玲, 曾睿琳, 兰道亮. 单细胞转录组测序技术及在哺乳动物上的应用[J]. 生物技术通报, 2022, 38(11): 41-48. |
[10] | 郑青波, 叶娜, 张哓兰, 包鹏甲, 王福彬, 任稳稳, 廖月姣, 阎萍, 潘和平. 天祝白牦牛退行期毛囊细胞亚群鉴定以及特征基因生物信息学分析[J]. 生物技术通报, 2022, 38(10): 262-272. |
[11] | 王建勇, 邹永梅, 葛言彬, 王凯, 席梦利. 植物愈伤组织诱导过程中的表观遗传修饰研究进展[J]. 生物技术通报, 2021, 37(8): 253-262. |
[12] | 叶娜, 张晓兰, 包鹏甲, 王兴东, 阎萍, 潘和平. 单细胞测序技术及其在毛囊发育中的应用[J]. 生物技术通报, 2021, 37(10): 245-256. |
[13] | 张淼, 孙祥瑞, 徐春明. 单细胞RNA测序数据分析方法研究进展[J]. 生物技术通报, 2021, 37(1): 52-59. |
[14] | 李益, 孙超. 植物单细胞转录组测序研究进展[J]. 生物技术通报, 2021, 37(1): 60-66. |
[15] | 过冬冬, 孙芬, 贺轩昂, 羊东晔, 黄来强. 单细胞测序技术在肝脏疾病的应用与展望[J]. 生物技术通报, 2021, 37(1): 137-144. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||