生物技术通报 ›› 2021, Vol. 37 ›› Issue (8): 253-262.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1302
王建勇1,2(), 邹永梅3, 葛言彬4, 王凯2(), 席梦利1()
收稿日期:
2020-10-21
出版日期:
2021-08-26
发布日期:
2021-09-10
作者简介:
王建勇,男,博士研究生,研究方向:植物表观遗传;E-mail: 基金资助:
WANG Jian-yong1,2(), ZOU Yong-mei3, GE Yan-bin4, WANG Kai2(), XI Meng-li1()
Received:
2020-10-21
Published:
2021-08-26
Online:
2021-09-10
摘要:
植物组织培养是一个复杂的发育过程,可分为愈伤组织诱导、不定芽分化和不定根诱导3个主要阶段,将外植体成功诱导出愈伤组织在生物科学的研究中具有重要意义。植物愈伤组织诱导是指将已分化的细胞逆转为多能性干细胞,是分化细胞内部的基因在复杂的外界因素刺激下相互作用的结果,不但受到众多外源信号的调控,还受到内部多样的表观遗传修饰的影响。生物体内表观遗传信息的改变比基因组DNA序列的改变影响更为深远,可影响到植物组织培养的每个环节。前期研究表明,表观遗传修饰在植物愈伤组织的诱导过程中起到了重要作用。综述了DNA甲基化、组蛋白修饰、小RNA、转座子及染色质重塑等常见的表观遗传修饰对植物愈伤组织诱导的影响,分析了其中的调控机制,总结了表观遗传修饰在该领域存在的主要问题,并展望了未来的研究方向,以推动表观遗传学在该领域的深入研究,不但有助于深化对愈伤组织诱导过程的理解,更有助于顽拗植物愈伤组织的诱导工作,甚至对推动转基因植物的开发都有一定的帮助作用。
王建勇, 邹永梅, 葛言彬, 王凯, 席梦利. 植物愈伤组织诱导过程中的表观遗传修饰研究进展[J]. 生物技术通报, 2021, 37(8): 253-262.
WANG Jian-yong, ZOU Yong-mei, GE Yan-bin, WANG Kai, XI Meng-li. Advance on Epigenetic Modification During Plant Callus Induction[J]. Biotechnology Bulletin, 2021, 37(8): 253-262.
[1] |
Birnbaum KD, Roudier F. Epigenetic memory and cell fate reprogramming in plants[J]. Regeneration, 2017, 4(1):15-20.
doi: 10.1002/reg2.73 pmid: 28316791 |
[2] |
Ikeuchi M, Sugimoto K, Iwase A. Plant callus:mechanisms of induction and repression[J]. Plant Cell, 2013, 25(9):3159-3173.
doi: 10.1105/tpc.113.116053 URL |
[3] |
Krizova K, Fojtova M, Depicker A, et al. Cell culture-induced gradual and frequent epigenetic reprogramming of invertedly repeated tobacco transgene epialleles[J]. Plant Physiology, 2009, 149(3):1493-1504.
doi: 10.1104/pp.108.133165 URL |
[4] |
de la Paz Sanchez M, Aceves-Garcia P, Petrone E, et al. The impact of Polycomb group(PcG)and Trithorax group(TrxG)epigenetic factors in plant plasticity[J]. New Phytologist, 2015, 208(3):684-694.
doi: 10.1111/nph.13486 pmid: 26037337 |
[5] |
Miguel C, Marum L. An epigenetic view of plant cells cultured in vitro:somaclonal variation and beyond[J]. Journal of Experimental Botany, 2011, 62(11):3713-3725.
doi: 10.1093/jxb/err155 pmid: 21617249 |
[6] | Lee K, Park OS, Seo PJ. Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation[J]. Science Signaling, 2017, 10(507):1-10. |
[7] |
Lee K, Park OS, Jung SJ, et al. Histone deacetylation-mediated cellular dedifferentiation in Arabidopsis[J]. Journal of Plant Physiology, 2016, 191:95-100.
doi: 10.1016/j.jplph.2015.12.006 URL |
[8] |
Lee K, Park OS, Seo PJ. RNA-seq analysis of the Arabidopsis transcriptome in pluripotent calli[J]. Molecules and Cells, 2016, 39(6):484-494.
doi: 10.14348/molcells.2016.0049 URL |
[9] | Du X, Fang T, Liu Y, et al. Global profiling of N6-methyladenosine methylation in maize callus induction[J]. The Plant Genome, 2020, 13(2):e20018. |
[10] | Kim JY, Yang W, Forner J, et al. Epigenetic reprogramming by histone acetyltransferase HAG1/AtGCN5 is required for pluripotency acquisition in Arabidopsis[J]. EMBO Journal, 2018, 37(20):98726. |
[11] |
Bottley A, Chapman NH, Koebner RMD. Homoeologous gene silencing in tissue cultured wheat callus[J]. BMC Genetics, 2008, 9:65.
doi: 10.1186/1471-2156-9-65 pmid: 18928533 |
[12] |
Zakrzewski F, Schmidt M, Van Lijsebettens M, et al. DNA methylation of retrotransposons, DNA transposons and genes in sugar beet(Beta vulgaris L.)[J]. Plant Journal, 2017, 90(6):1156-1175.
doi: 10.1111/tpj.2017.90.issue-6 URL |
[13] | Kapazoglou A, Ganopoulos I, Tani E, et al. Epigenetics, Epigenomics and crop improvement[M]// Kuntz M. Transgenic Plants and Beyond. Lodon: Academic Press, 2018:287-324. |
[14] |
Xu J, Wang X, Cao H, et al. Dynamic changes in methylome and transcriptome patterns in response to methyltransferase inhibitor 5-azacytidine treatment in citrus[J]. DNA Research, 2017, 24(5):509-522.
doi: 10.1093/dnares/dsx021 URL |
[15] |
Niederhuth CE, Schmitz RJ. Putting DNA methylation in context:from genomes to gene expression in plants[J]. Biochim Biophys Acta-Gene Regul Mech, 2017, 1860(1):149-156.
doi: 10.1016/j.bbagrm.2016.08.009 URL |
[16] |
Li J, Wang M, Li Y, et al. Multi-omics analyses reveal epigenomics basis for cotton somatic embryogenesis through successive regeneration acclimation process[J]. Plant Biotechnology Journal, 2019, 17(2):435-450.
doi: 10.1111/pbi.2019.17.issue-2 URL |
[17] |
Movahedi A, Zhang J, Sun W, et al. Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress[J]. Plant Physiology and Biochemistry, 2018, 127:64-73.
doi: S0981-9428(18)30126-8 pmid: 29549759 |
[18] |
Stroud H, Ding B, Simon SA, et al. Plants regenerated from tissue culture contain stable epigenome changes in rice[J]. eLife, 2013, 2:e00354.
doi: 10.7554/eLife.00354 URL |
[19] |
Gao Y, Ran L, Kong Y, et al. Assessment of DNA methylation changes in tissue culture of Brassica napus[J]. Russian Journal of Genetics, 2014, 50(11):1186-1191.
doi: 10.1134/S1022795414100032 URL |
[20] |
Berdasco M, Alcazar R, Victoria Garcia-Ortiz M, et al. Promoter DNA hypermethylation and gene repression in undifferentiated Arabidopsis cells[J]. PLoS One, 2008, 3(10):e3306.
doi: 10.1371/journal.pone.0003306 URL |
[21] |
Li W, Liu H, Cheng ZJ, et al. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling[J]. PLoS Genetics, 2011, 7(8):e1002243.
doi: 10.1371/journal.pgen.1002243 URL |
[22] |
Stelpflug SC, Eichten SR, Hermanson PJ, et al. Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize[J]. Genetics, 2014, 198(1):209-218.
doi: 10.1534/genetics.114.165480 pmid: 25023398 |
[23] | Gozukirmizi N. Analysis of retrotransposition and DNA methylation in barley callus culture[J]. Acta Biol Hung, 2013, 64(1):90-99. |
[24] |
Foerderer A, Zhou Y, Turck F. The age of multiplexity:recruitment and interactions of Polycomb complexes in plants[J]. Current Opinion in Plant Biology, 2016, 29:169-178.
doi: 10.1016/j.pbi.2015.11.010 URL |
[25] |
Jiang H, Kohler C. Evolution, function, and regulation of genomic imprinting in plant seed development[J]. Journal of Experimental Botany, 2012, 63(13):4713-4722.
doi: 10.1093/jxb/ers145 pmid: 22922638 |
[26] |
Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control[J]. Nature Reviews Genetics, 2016, 17(8):487-500.
doi: 10.1038/nrg.2016.59 URL |
[27] | Jiang F, Feng Z, Liu H, et al. Involvement of plant stem cells or stem cell-like cells in dedifferentiation[J]. Frontiers in Plant Science, 2015, 6:1028. |
[28] |
Desvoyes B, Sanchez MP, Ramirez-Parra E, et al. Impact of nucleosome dynamics and histone modifications on cell proliferation during Arabidopsis development[J]. Heredity, 2010, 105(1):80-91.
doi: 10.1038/hdy.2010.50 pmid: 20424644 |
[29] |
Engelhorn J, Blanvillain R, Carles CC. Gene activation and cell fate control in plants:a chromatin perspective[J]. Cellular and Molecular Life Sciences, 2014, 71(16):3119-3137.
doi: 10.1007/s00018-014-1609-0 pmid: 24714879 |
[30] |
Lee K, Seo PJ. Dynamic epigenetic changes during plant regeneration[J]Trends Plant Sci, 2018, 23(3):235-247.
doi: 10.1016/j.tplants.2017.11.009 URL |
[31] |
Xu K, Liu J, Fan M, et al. A genome-wide transcriptome profiling reveals the early molecular events during callus initiation in Arabidopsis multiple organs[J]. Genomics, 2012, 100(2):116-124.
doi: 10.1016/j.ygeno.2012.05.013 URL |
[32] | Furuta K, Kubo M, Sano K, et al. The CKH2/PKL chromatin remodeling factor negatively regulates cytokinin responses in Arabidopsis calli[J]. Plant Cell Physiol, 2011, 4:618-628. |
[33] | Zhang H, Guo F, Qi P, et al. OsHDA710-mediated histone deacetylation regulates callus formation of rice mature embryo[J]. Plant Cell Physiol, 2020, 9:1646-1660. |
[34] |
Fehér A. Callus, dedifferentiation, totipotency, somatic embryogenesis:what these terms mean in the era of molecular plant biology?[J]. Frontiers Plant Sci, 2019, 10:536.
doi: 10.3389/fpls.2019.00536 URL |
[35] |
Lee K, Park OS, Seo PJ. JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis[J]. Plant J, 2018, 95(6):961-975.
doi: 10.1111/tpj.2018.95.issue-6 URL |
[36] |
Ishihara H, Sugimoto K, Tarr PT, et al. Primed histone demethylation regulates shoot regenerative competency[J]. Nature Communications, 2019, 10(1):1786.
doi: 10.1038/s41467-019-09386-5 pmid: 30992430 |
[37] |
Shippen DE, McKnight TD. Telomeres, telomerase and plant development[J]. Trends Plant Sci, 1998, 3(4):126-130.
doi: 10.1016/S1360-1385(98)01214-X URL |
[38] |
Grafi G, Ben-Meir H, Avivi Y, et al. Histone methylation controls telomerase-independent telomere lengthening in cells undergoing dedifferentiation[J]. Dev Biol, 2007, 306(2):838-846.
doi: 10.1016/j.ydbio.2007.03.023 URL |
[39] |
Sovakova PP, Magdolenova A, Konecna K, et al. Telomere elongation upon transfer to callus culture reflects the reprogramming of telomere stability control in Arabidopsis[J]. Plant Molecular Biology, 2018, 98(1-2):81-99.
doi: 10.1007/s11103-018-0765-2 URL |
[40] |
Gallego ME, White CI. RAD50 function is essential for telomere maintenance in Arabidopsis[J]. Proc Natl Acad Sci USA, 2001, 98(4):1711-1716.
doi: 10.1073/pnas.98.4.1711 URL |
[41] | Fajkus J, Fulneckova J, Hulanova M, et al. Plant cells express telomerase activity upon transfer to callus culture, without extensively changing telomere lengths[J]. Molecular & General Genetics, 1998, 260(5):470-474. |
[42] |
Liu Z, Li J, Wang L, et al. Repression of callus initiation by the miRNA-directed interaction of auxin-cytokinin in Arabidopsis thaliana[J]. Plant Journal, 2016, 87(4):391-402.
doi: 10.1111/tpj.2016.87.issue-4 URL |
[43] |
Movahedi A, Zhang J, Sun W, et al. Plant small RNAs:definition, classification and response against stresses[J]. Biologia, 2018, 73(3):285-294.
doi: 10.2478/s11756-018-0034-5 URL |
[44] |
Chen CJ, Liu Q, Zhang YC, et al. Genome-wide discovery and analysis of microRNAs and other small RNAs from rice embryogenic callus[J]. Rna Biology, 2011, 8(3):538-547.
doi: 10.4161/rna.8.3.15199 URL |
[45] |
Liu H, Ma L, Yang X, et al. Integrative analysis of DNA methylation, mRNAs, and small RNAs during maize embryo dedifferentiation[J]. BMC Plant Biology, 2017, 17:105.
doi: 10.1186/s12870-017-1055-x URL |
[46] | Qiao M, Xiang F. A set of Arabidopsis thaliana miRNAs involve shoot regeneration in vitro[J]. Plant Signaling & Behavior, 2013, 8(3):e23479. |
[47] |
Zhang TQ, Lian H, Tang H, et al. An intrinsic microRNA timer regulates progressive decline in shoot regenerative capacity in plants[J]. Plant Cell, 2015, 27(2):349-360.
doi: 10.1105/tpc.114.135186 URL |
[48] |
He C, Chen X, Huang H, et al. Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues[J]. PLoS Genetics, 2012, 8(8):e1002911.
doi: 10.1371/journal.pgen.1002911 URL |
[49] |
Williams L, Zhao J, Morozova N, et al. Chromatin reorganization accompanying cellular dedifferentiation is associated with modifications of histone H3, redistribution of HP1, and activation of E2F-target genes[J]. Dev Dyn, 2003, 228(1):113-120.
doi: 10.1002/(ISSN)1097-0177 URL |
[50] |
Wójcikowska B, Wójcik AM, Gaj MD. Epigenetic regulation of auxin-induced somatic embryogenesis in plants[J]. International Journal of Molecular Sciences, 2020, 21(7):2307.
doi: 10.3390/ijms21072307 URL |
[51] |
Eichten SR, Swanson-Wagner RA, Schnable JC, et al. Heritable epigenetic variation among maize inbreds[J]. PLoS Genetics, 2011, 7(11):e1002372.
doi: 10.1371/journal.pgen.1002372 URL |
[52] |
Zhang X, Yazaki J, Sundaresan A, et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006, 126(6):1189-1201.
doi: 10.1016/j.cell.2006.08.003 URL |
[53] |
Us-Camas R, Rivera-Solis G, Duarte-Ake F, et al. In vitro culture:an epigenetic challenge for plants[J]. Plant Cell Tissue and Organ Culture, 2014, 118(2):187-201.
doi: 10.1007/s11240-014-0482-8 URL |
[54] |
Gernand D, Golczyk H, Rutten T, et al. Tissue culture triggers chromosome alterations, amplification, and transposition of repeat sequences in Allium fistulosum[J]. Genome, 2007, 50(5):435-442.
pmid: 17612612 |
[55] |
Law JA, Jacobsen SE. Establishing, maintaining and modifying DNA methylation patterns in plants and animals[J]. Nature Reviews Genetics, 2010, 11(3):204-220.
doi: 10.1038/nrg2719 URL |
[56] | Zhang N, Laux T. Epigenetically jump starting de novo shoot regeneration[J]. EMBO Journal, 2018, 37(20):e100596. |
[57] |
Baucom RS, Estill JC, Chaparro C, et al. Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome[J]. PLoS Genetics, 2009, 5(11):e1000732.
doi: 10.1371/journal.pgen.1000732 URL |
[58] |
Wang W, Zheng H, Fan C, et al. High rate of chimeric gene origination by retroposition in plant genomes[J]. Plant Cell, 2006, 18(8):1791-1802.
pmid: 16829590 |
[59] |
Lanciano S, Carpentier MC, Llauro C, et al. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants[J]. PLoS Genetics, 2017, 13(2):e1006630.
doi: 10.1371/journal.pgen.1006630 URL |
[60] |
Saze H, Tsugane K, Kanno T, et al. DNA Methylation in plants:relationship to small RNAs and histone modifications, and functions in transposon inactivation[J]. Plant and Cell Physiology, 2012, 53(5):766-784.
doi: 10.1093/pcp/pcs008 URL |
[61] |
Grafi G. How cells dedifferentiate:a lesson from plants[J]. Developmental Biology, 2004, 268(1):1-6.
doi: 10.1016/j.ydbio.2003.12.027 URL |
[1] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[2] | 张新博, 崔浩亮, 史佩华, 高锦春, 赵顺然, 陶晨雨. 低起始量的免疫共沉淀技术研究进展[J]. 生物技术通报, 2023, 39(4): 227-235. |
[3] | 汤茜茜, 林楚宇, 陶增. 植物组蛋白去甲基化酶研究进展[J]. 生物技术通报, 2022, 38(7): 13-22. |
[4] | 张淼, 杨露露, 贾岩龙, 王天云. DNA甲基化和组蛋白甲基化修饰的表观遗传调控作用研究进展[J]. 生物技术通报, 2022, 38(7): 23-30. |
[5] | 王晨晨, 张凡丽, 陈珮琪, 翁思瑶, 王慧芳, 崔小娟. 哺乳动物DNA甲基转移酶DNMT1和DNMT3结构与功能的研究进展[J]. 生物技术通报, 2022, 38(7): 31-39. |
[6] | 陈桂芳, 杨佳怡, 高运华, 任歌. 染色质免疫共沉淀测序技术研究进展[J]. 生物技术通报, 2022, 38(7): 40-50. |
[7] | 朴君, 张璐婕, 朴敬爱, 周益军, 李硕. 利用小RNA深度测序技术检测灰飞虱病毒种类[J]. 生物技术通报, 2022, 38(2): 281-288. |
[8] | 唐德平, 姚慧慧, 唐金舟, 毛爱红. 癌症中microRNAs和表观遗传之间的相互调控作用[J]. 生物技术通报, 2020, 36(8): 194-200. |
[9] | 赵琳, 王璞, 吴琦, 宋瑞瑞, 兰韬, 云振宇. 非生物胁迫下植物组蛋白修饰参与基因表达调控的研究进展[J]. 生物技术通报, 2020, 36(7): 182-189. |
[10] | 周伟, 王宇, 解莉楠. 植物组蛋白赖氨酸甲基化建立过程及其遗传性研究进展[J]. 生物技术通报, 2020, 36(4): 117-130. |
[11] | 刘治民, 杨芷怡, 冀凤丹, 梅志超, 于佳慧, 解莉楠. 非生物胁迫下植物DNA甲基化研究进展[J]. 生物技术通报, 2020, 36(11): 122-132. |
[12] | 江芮, 吕柯孬, 潘学峰, 崔新霞, 申世刚, 丁良. 表观遗传药物研发的现状与挑战[J]. 生物技术通报, 2019, 35(8): 213-225. |
[13] | 李真真, 赵佳晨, 马昱澍. 基于sRNA的氧化葡萄糖酸杆菌基因调控的研究[J]. 生物技术通报, 2018, 34(3): 59-66. |
[14] | 严玉萍, 钟晰, 王雪峰. 黄单胞菌属细菌非编码小RNA的研究进展[J]. 生物技术通报, 2017, 33(3): 22-28. |
[15] | 张亚芳, 何钢, 荣广天, 刘贤桂, 倪尚格, 张世良. 鸡血藤愈伤组织培养过程中内源激素变化研究[J]. 生物技术通报, 2017, 33(3): 66-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||