生物技术通报 ›› 2024, Vol. 40 ›› Issue (8): 13-23.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0251
王瑶1(), 王荣焕1, 冯铃洋2, 张璐1, 赵琦2, 王家乐2, 赵久然1()
收稿日期:
2024-03-15
出版日期:
2024-08-26
发布日期:
2024-09-05
通讯作者:
赵久然,博士,研究员,研究方向:玉米遗传育种;E-mail: maizezhao@126.com作者简介:
王瑶,博士,助理研究员,研究方向:玉米基因编辑及设计育种;E-mail: wangyao897@126.com基金资助:
WANG Yao1(), WANG Rong-huan1, FENG Ling-yang2, ZHANG Lu1, ZHAO Qi2, WANG Jia-le2, ZHAO Jiu-ran1()
Received:
2024-03-15
Published:
2024-08-26
Online:
2024-09-05
摘要:
杂草是影响作物产量与品质的重要不利因素之一,防除杂草是农作物田间管理必不可少的环节。乙酰辅酶A羧化酶(acetyl-coA carboxylase, ACCase)是乙酰辅酶A合成脂肪酸的限速酶,ACCase抑制剂类除草剂抑制ACCase活性,造成脂肪酸合成受阻,从而灭杀杂草。随着除草剂在农业生产上的广泛应用,抗性杂草的问题日益严重,对农作物产量和品质的影响尤为明显,创制和选育抗除草剂的优异新种质及新品种是预防田间杂草的有效策略,并对单双子叶作物复合种植具有重要意义。通过自然突变、化学诱变、转基因和基因编辑技术已在多种作物和杂草中发掘了有效变异位点,并进行了育种应用。本文针对抗ACCase抑制剂类作物种质的开发和利用,详述了ACCase的性质和作用机制、ACCase抑制剂类除草剂的分类和抗性分子机制,以及目前已发现的有效变异位点等,进而提出创制高抗ACCase抑制剂类除草剂优异新种质的高效育种策略。
王瑶, 王荣焕, 冯铃洋, 张璐, 赵琦, 王家乐, 赵久然. 作物抗ACCase抑制剂类除草剂研究进展[J]. 生物技术通报, 2024, 40(8): 13-23.
WANG Yao, WANG Rong-huan, FENG Ling-yang, ZHANG Lu, ZHAO Qi, WANG Jia-le, ZHAO Jiu-ran. Research Progress of Crop Resistance to ACCase-inhibitor-like Herbicides[J]. Biotechnology Bulletin, 2024, 40(8): 13-23.
类型 Type | 主要成分 Main components |
---|---|
芳氧苯氧丙酸酯类 Aryloxyphenoxypropionates(FOPs) | 禾草灵(diclofop-methyl),精喹禾灵(quizalofop-P-ethyl),吡氟禾草灵(fluazifop-butyl),精噁唑禾草灵(fenoxaprop-P-ethyl),喹禾灵(quizalofop-ethyl),氟吡甲禾灵(haloxyfop-P-methyl)等 |
环己二酮类Cyclohexanediones(DIMs) | 烯草酮(clethodim),烯禾啶(sethoxydim),吡喃草酮(tepraloxydim),噻草酮(cycloxdim)等 |
苯基吡唑啉类Phenylpyrazoline(DEN) | 唑啉草酯(pinoxaden) |
表1 ACCase抑制剂类除草剂主要类型
Table 1 Main types of ACCase-inhibitor-like herbicides
类型 Type | 主要成分 Main components |
---|---|
芳氧苯氧丙酸酯类 Aryloxyphenoxypropionates(FOPs) | 禾草灵(diclofop-methyl),精喹禾灵(quizalofop-P-ethyl),吡氟禾草灵(fluazifop-butyl),精噁唑禾草灵(fenoxaprop-P-ethyl),喹禾灵(quizalofop-ethyl),氟吡甲禾灵(haloxyfop-P-methyl)等 |
环己二酮类Cyclohexanediones(DIMs) | 烯草酮(clethodim),烯禾啶(sethoxydim),吡喃草酮(tepraloxydim),噻草酮(cycloxdim)等 |
苯基吡唑啉类Phenylpyrazoline(DEN) | 唑啉草酯(pinoxaden) |
图4 酵母ACCase CT功能域与氟吡甲禾灵结合模式图 A:结合空间图(左图:自由酶状态结合界面的结构;右图:结合除草剂后结合界面的结构);B:结合界面的分解结构示意图
Fig. 4 Binding mode of the interactions between yeast ACCase CT domain and haloxyfop A: Stereographic diagram showing the binding sites for haloxyfop(Left: The structure of binding interface before binding haloxyfop. Right: The structure of binding interface after binding haloxyfop). B: Schematic diagram showing binding interface between haloxyfop and the CT domain
植物种类 Plant species | 变异位点 Mutant sites | FOPs类 FOPs types | DIMs类 DIMs types |
---|---|---|---|
看麦娘A. aequalis[ | I1781L | 精噁唑禾草灵、炔草酯 | N |
日本看麦娘A. japonicus | W2027C[ | 恶唑禾草灵、炔草酯、吡氟禾草灵、高效氟吡甲禾灵、氰氟草酯、噁唑酰草胺 | N |
大穗看麦娘A. myosuroides | I1781L/V[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | 烯草酮、噻草酮 |
I1781T[ | 炔草酯 | 噻草酮 | |
D2078G[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | 烯草酮、噻草酮 | |
C2088R[ | 炔草酯、禾草灵、吡氟禾草灵、氟吡甲禾灵、喹禾灵 | 烯草酮、噻草酮、稀禾定、吡喃草酮 | |
W1999C/S[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
W2027C[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
I2041N/V[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
G2096A[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
野燕麦A. fatua[ | I1781L | 精噁唑禾草灵、炔草酯 | 烯草酮、噻草酮 |
狗尾草S. viridis[ | I1781L | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 |
硬直黑麦草L. rigidum[ | I1781L | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 |
D2078G | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 | |
C2088R | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 | |
不实野燕麦A. sterilis[ | I1781L | 炔草酯 | 肟草酮 |
W2027C | 精噁唑禾草灵、炔草酯 | N | |
I2041N | 精噁唑禾草灵 | N | |
D2078G | 精噁唑禾草灵、氟吡甲禾灵 | 稀禾定、肟草酮 | |
W1999C | 精噁唑禾草灵 | N | |
棒头草P. fugax[ | W1999S | 精噁唑禾草灵、炔草酯 | 稀禾定、烯草酮 |
细虉草P. minor[ | W2027C | 禾草灵、精噁唑禾草灵、炔草酯 | N |
D2078G | 禾草灵、精噁唑禾草灵、炔草酯 | N | |
奇虉草P. paradoxa[ | I1781L | 炔草酯 | 肟草酮 |
D2078G | 精噁唑禾草灵、氟吡甲禾灵 | 稀禾定、肟草酮 |
表2 杂草对FOPs与DIMs类除草剂的有效变异位点
Table 2 Effective mutation sites of weeds resistant to FOPs and DIMs herbicides
植物种类 Plant species | 变异位点 Mutant sites | FOPs类 FOPs types | DIMs类 DIMs types |
---|---|---|---|
看麦娘A. aequalis[ | I1781L | 精噁唑禾草灵、炔草酯 | N |
日本看麦娘A. japonicus | W2027C[ | 恶唑禾草灵、炔草酯、吡氟禾草灵、高效氟吡甲禾灵、氰氟草酯、噁唑酰草胺 | N |
大穗看麦娘A. myosuroides | I1781L/V[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | 烯草酮、噻草酮 |
I1781T[ | 炔草酯 | 噻草酮 | |
D2078G[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | 烯草酮、噻草酮 | |
C2088R[ | 炔草酯、禾草灵、吡氟禾草灵、氟吡甲禾灵、喹禾灵 | 烯草酮、噻草酮、稀禾定、吡喃草酮 | |
W1999C/S[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
W2027C[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
I2041N/V[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
G2096A[ | 精噁唑禾草灵、炔草酯、氟吡甲禾灵 | N | |
野燕麦A. fatua[ | I1781L | 精噁唑禾草灵、炔草酯 | 烯草酮、噻草酮 |
狗尾草S. viridis[ | I1781L | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 |
硬直黑麦草L. rigidum[ | I1781L | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 |
D2078G | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 | |
C2088R | 禾草灵、氟吡甲禾灵 | 烯草酮、噻草酮 | |
不实野燕麦A. sterilis[ | I1781L | 炔草酯 | 肟草酮 |
W2027C | 精噁唑禾草灵、炔草酯 | N | |
I2041N | 精噁唑禾草灵 | N | |
D2078G | 精噁唑禾草灵、氟吡甲禾灵 | 稀禾定、肟草酮 | |
W1999C | 精噁唑禾草灵 | N | |
棒头草P. fugax[ | W1999S | 精噁唑禾草灵、炔草酯 | 稀禾定、烯草酮 |
细虉草P. minor[ | W2027C | 禾草灵、精噁唑禾草灵、炔草酯 | N |
D2078G | 禾草灵、精噁唑禾草灵、炔草酯 | N | |
奇虉草P. paradoxa[ | I1781L | 炔草酯 | 肟草酮 |
D2078G | 精噁唑禾草灵、氟吡甲禾灵 | 稀禾定、肟草酮 |
植物种类Plant species | 专利授权或公开号Patent license or publicationed code | 变异位点Mutation site | FOPs类 FOPs type | DIMs类 DIMs type |
---|---|---|---|---|
小麦T. aestivum | WO2012106321A1 | A2004V | R | N |
水稻O. sativa | CN112410308A | W2010L+ C2099R | R | N |
水稻O. sativa | CN108359646A | I1792L | R | N |
A2015V | R | N | ||
W2038C | R | N | ||
I2052N | R | N | ||
D2089G | R | N | ||
I1792L+A2015V | R | N | ||
A2015V+W2038C | R | N | ||
I1792L+W2038C | R | N | ||
水稻O. sativa | CN201810138888.3 | N1791S | R | R |
N1791S+I1792L | R | R | ||
N1791S+G2107S | R | R |
表3 EMS技术创制抗FOPs与DIMs类除草剂的有效变异位点
Table 3 Effective mutation sites resistant to FOPs and DIMs herbicides by EMS
植物种类Plant species | 专利授权或公开号Patent license or publicationed code | 变异位点Mutation site | FOPs类 FOPs type | DIMs类 DIMs type |
---|---|---|---|---|
小麦T. aestivum | WO2012106321A1 | A2004V | R | N |
水稻O. sativa | CN112410308A | W2010L+ C2099R | R | N |
水稻O. sativa | CN108359646A | I1792L | R | N |
A2015V | R | N | ||
W2038C | R | N | ||
I2052N | R | N | ||
D2089G | R | N | ||
I1792L+A2015V | R | N | ||
A2015V+W2038C | R | N | ||
I1792L+W2038C | R | N | ||
水稻O. sativa | CN201810138888.3 | N1791S | R | R |
N1791S+I1792L | R | R | ||
N1791S+G2107S | R | R |
植物种类Plant species | 专利授权或公开号Patent license or publicationed code | 变异位点Mutant sites | FOPs类FOPs type | DIMs类DIMs type |
---|---|---|---|---|
小麦T. aestivum | CN201811438688.6 | R1708C | R | R |
N1768S | R | R | ||
I1769L | R | R | ||
A1992V | R | R | ||
W2015C | R | R | ||
I2029N | R | R | ||
D2066G | R | R | ||
G2084S | R | R | ||
水稻O. sativa | CN201811176178.6 | R1731C | R | N |
Y2276D | R | N | ||
R1731C+Y2276D | R | N | ||
水稻O. sativa | CN201810959406.0 | A1796G | R | N |
A1797P | R | N | ||
E1835P | R | N | ||
V1875F | R | N | ||
W2010G | R | N | ||
W2010C | R | N | ||
E2050G | R | N | ||
V2060L | R | N | ||
A2070V | R | N | ||
K2106E | R | N |
表4 转基因技术创制抗FOPs与DIMs类除草剂的种质
Table 4 Novel germplasm resistant to FOPs and DIMs herbicides by transgenic technology
植物种类Plant species | 专利授权或公开号Patent license or publicationed code | 变异位点Mutant sites | FOPs类FOPs type | DIMs类DIMs type |
---|---|---|---|---|
小麦T. aestivum | CN201811438688.6 | R1708C | R | R |
N1768S | R | R | ||
I1769L | R | R | ||
A1992V | R | R | ||
W2015C | R | R | ||
I2029N | R | R | ||
D2066G | R | R | ||
G2084S | R | R | ||
水稻O. sativa | CN201811176178.6 | R1731C | R | N |
Y2276D | R | N | ||
R1731C+Y2276D | R | N | ||
水稻O. sativa | CN201810959406.0 | A1796G | R | N |
A1797P | R | N | ||
E1835P | R | N | ||
V1875F | R | N | ||
W2010G | R | N | ||
W2010C | R | N | ||
E2050G | R | N | ||
V2060L | R | N | ||
A2070V | R | N | ||
K2106E | R | N |
植物种类Plant species | 专利授权或公开号Patent license or publicationed number | 变异位点Mutant sites | FOPs类FOPs types | DIMs类DIMs types |
---|---|---|---|---|
水稻O. sativa | CN202111097312.5 | I1879V | N | R |
C2186R | N | R | ||
水稻O. sativa | CN202111596611.3 | W2097G | R | N |
I2139N | R | N | ||
I2139V | R | N | ||
G2194S | R | N | ||
水稻O. sativa | CN202110506568.0 | W2097G | R | N |
水稻O. sativa | CN202110506569.5 | P1927Y | R | N |
水稻O. sativa | CN201911126536.7 | W2038S | R | N |
表5 基因编辑技术创制抗FOPs与DIMs类除草剂的种质
Table 5 Novel germplasm resistant to FOPss and DIMs herbicides by gene editing technology
植物种类Plant species | 专利授权或公开号Patent license or publicationed number | 变异位点Mutant sites | FOPs类FOPs types | DIMs类DIMs types |
---|---|---|---|---|
水稻O. sativa | CN202111097312.5 | I1879V | N | R |
C2186R | N | R | ||
水稻O. sativa | CN202111596611.3 | W2097G | R | N |
I2139N | R | N | ||
I2139V | R | N | ||
G2194S | R | N | ||
水稻O. sativa | CN202110506568.0 | W2097G | R | N |
水稻O. sativa | CN202110506569.5 | P1927Y | R | N |
水稻O. sativa | CN201911126536.7 | W2038S | R | N |
除草剂Herbicide | 基因Gene | 来源Souce |
---|---|---|
草甘膦 | 2mepsps | 玉米Zea mays |
cp4 epsp | 根癌农杆菌CP4Agrobacterium tumefaciens strain CP4 | |
epsps(Ag) | 球形节杆菌Arthrobacter globiformis | |
epsps grg23ace5 | 基因合成 | |
gat4601 | 地衣芽孢杆菌Bacillus licheniformis | |
gat4621 | 地衣芽孢杆菌Bacillus licheniformis | |
goxv247 | 人苍白杆菌LBAAOchrobactrum anthropi strain LBAA | |
mepsps | 玉米Zea mays | |
2,4-D类除草剂 | aad-1 | 鞘脂菌Sphingobium herbicidovorans |
aad-12 | 食酸戴尔福特菌Delftia acidovorans | |
ft_t | 鞘脂菌Sphingobium herbicidovorans | |
耐麦草畏除草剂 | dmo | 嗜麦芽窄食单胞菌DI-6Stenotrophomonas maltophilia strain DI-6 |
草铵膦 | Bar | 吸水链霉菌Streptomyces hygroscopicus |
mo-pat | 产绿色链霉菌Streptomyces viridochromogenes | |
pat | 产绿色链霉菌Streptomyces viridochromogenes | |
pat(syn) | 基因合成 | |
咪唑啉酮除草剂 | AtAHAS | 拟南芥Arabidopsis thaliana |
HPPD抑制剂类 | hppdPF W336 | 荧光假单胞菌A32Pseudomonas fluorescens strain A32 |
avhppd-03 | 燕麦Avena sativa | |
hppdPf4Pa | 荧光假单胞Pseudomonas fluorescens | |
Oxynil类除草剂 | bxn | 肺炎克雷伯氏菌臭鼻亚种Klebsiella pneumoniae subsp. Ozaenae |
磺酰脲除草剂 | Als | 拟南芥Arabidopsis thaliana |
csr1-2 | 拟南芥Arabidopsis thaliana | |
gm-hra | 大豆Glycine max | |
S4-HrA | 烟草Nicotiana tabacu | |
surB | 烟草Nicotiana tabacu | |
zm-hra | 玉米Zea mays |
表6 除草剂耐受基因及来源
Table 6 Herbicide-tolerant genes and their sources
除草剂Herbicide | 基因Gene | 来源Souce |
---|---|---|
草甘膦 | 2mepsps | 玉米Zea mays |
cp4 epsp | 根癌农杆菌CP4Agrobacterium tumefaciens strain CP4 | |
epsps(Ag) | 球形节杆菌Arthrobacter globiformis | |
epsps grg23ace5 | 基因合成 | |
gat4601 | 地衣芽孢杆菌Bacillus licheniformis | |
gat4621 | 地衣芽孢杆菌Bacillus licheniformis | |
goxv247 | 人苍白杆菌LBAAOchrobactrum anthropi strain LBAA | |
mepsps | 玉米Zea mays | |
2,4-D类除草剂 | aad-1 | 鞘脂菌Sphingobium herbicidovorans |
aad-12 | 食酸戴尔福特菌Delftia acidovorans | |
ft_t | 鞘脂菌Sphingobium herbicidovorans | |
耐麦草畏除草剂 | dmo | 嗜麦芽窄食单胞菌DI-6Stenotrophomonas maltophilia strain DI-6 |
草铵膦 | Bar | 吸水链霉菌Streptomyces hygroscopicus |
mo-pat | 产绿色链霉菌Streptomyces viridochromogenes | |
pat | 产绿色链霉菌Streptomyces viridochromogenes | |
pat(syn) | 基因合成 | |
咪唑啉酮除草剂 | AtAHAS | 拟南芥Arabidopsis thaliana |
HPPD抑制剂类 | hppdPF W336 | 荧光假单胞菌A32Pseudomonas fluorescens strain A32 |
avhppd-03 | 燕麦Avena sativa | |
hppdPf4Pa | 荧光假单胞Pseudomonas fluorescens | |
Oxynil类除草剂 | bxn | 肺炎克雷伯氏菌臭鼻亚种Klebsiella pneumoniae subsp. Ozaenae |
磺酰脲除草剂 | Als | 拟南芥Arabidopsis thaliana |
csr1-2 | 拟南芥Arabidopsis thaliana | |
gm-hra | 大豆Glycine max | |
S4-HrA | 烟草Nicotiana tabacu | |
surB | 烟草Nicotiana tabacu | |
zm-hra | 玉米Zea mays |
[1] | 袁晓春, 张文玲, 万秀娟, 等. 大豆玉米带状复合种植中存在的问题及解决对策[J]. 种子科技, 2023, 41(16): 63-65. |
Yuan XC, Zhang WL, Wan XJ, et al. Problems and countermeasures in soybean-corn strip compound planting[J]. Seed Sci Technol, 2023, 41(16): 63-65. | |
[2] | 张帅, 王云鹏, 李永平. 大豆玉米带状复合种植田杂草防治关键技术与治理建议[J]. 现代农药, 2023, 22(5): 46-48. |
Zhang S, Wang YP, Li YP. Key techniques and suggestions of weed control in soybean and maize strip compound planting field[J]. Mod Agrochem, 2023, 22(5): 46-48. | |
[3] | Sasaki Y, Nagano Y. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding[J]. Biosci Biotechnol Biochem, 2004, 68(6): 1175-1184. |
[4] | Herbert D, Price LJ, Alban C, et al. Kinetic studies on two isoforms of acetyl-CoA carboxylase from maize leaves[J]. Biochem J, 1996, 318(Pt 3): 997-1006. |
[5] |
Kozaki A, Mayumi K, Sasaki Y. Thiol-disulfide exchange between nuclear-encoded and chloroplast-encoded subunits of pea acetyl-CoA carboxylase[J]. J Biol Chem, 2001, 276(43): 39919-39925.
doi: 10.1074/jbc.M103525200 pmid: 11546765 |
[6] |
Tang W, Zhou FY, Chen J, et al. Resistance to ACCase-inhibiting herbicides in an Asia minor bluegrass(Polypogon fugax)population in China[J]. Pestic Biochem Physiol, 2014, 108: 16-20.
doi: 10.1016/j.pestbp.2013.11.001 pmid: 24485310 |
[7] |
Zhang HL, Tweel B, Tong L. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-a carboxylase by haloxyfop and diclofop[J]. Proc Natl Acad Sci USA, 2004, 101(16): 5910-5915.
pmid: 15079078 |
[8] |
Nikolau BJ, Ohlrogge JB, Wurtele ES. Plant biotin-containing carboxylases[J]. Arch Biochem Biophys, 2003, 414(2): 211-222.
doi: 10.1016/s0003-9861(03)00156-5 pmid: 12781773 |
[9] |
Cronan JE Jr, Waldrop GL. Multi-subunit acetyl-CoA carboxylases[J]. Prog Lipid Res, 2002, 41(5): 407-435.
pmid: 12121720 |
[10] |
Xiang S, Callaghan MM, Watson KG, et al. A different mechanism for the inhibition of the carboxyltransferase domain of acetyl-coenzyme A carboxylase by tepraloxydim[J]. Proc Natl Acad Sci USA, 2009, 106(49): 20723-20727.
doi: 10.1073/pnas.0908431106 pmid: 19926852 |
[11] | 任康太, 胡方中, 王翔, 等. 芳氧基哒嗪类衍生物的合成及除草活性[J]. 应用化学, 2002, 19(9): 827-831. |
Ren KT, Hu FZ, Wang X, et al. Synthesis and herbicidal activity of aryloxy pyridazines[J]. Chin J Appl Chem, 2002, 19(9): 827-831. | |
[12] | 孙林英, 姜林, 王茂荣. 取代均三氮杂苯氧基苯氧丙酸酯的合成及其除草活性[J]. 合成化学, 2009, 17(3): 324-326. |
Sun LY, Jiang L, Wang MR. Synthesis and herbicidal activity of substitued s-triazinoxy phenoxy propanates[J]. Chin J Synth Chem, 2009, 17(3): 324-326. | |
[13] | 关爱莹, 唐咏, 吴鸿飞, 等. 2-(2-(4-(6-氯喹喔啉-2-基氧)苯氧基)丙酰氧基)-丁烯酸酯类化合物的合成与除草活性[J]. 农药, 2008, 47(2): 94-96. |
Guan AY, Tang Y, Wu HF, et al. The synthesis and herbicidal activity of 2-(2-(4-(6-chloroquinoxalin-2-yloxy)phenoxy)propanoyloxy)-3-methylbut-3-enoates[J]. Agrochemicals, 2008, 47(2): 94-96. | |
[14] |
Mitchell G, Bartlett DW, Fraser TE, et al. Mesotrione: a new selective herbicide for use in maize[J]. Pest Manag Sci, 2001, 57(2): 120-128.
doi: 10.1002/1526-4998(200102)57:2<120::AID-PS254>3.0.CO;2-E pmid: 11455642 |
[15] |
Zhang HL, Yang ZR, Shen Y, et al. Crystal structure of the carboxyltransferase domain of acetyl-coenzyme A carboxylase[J]. Science, 2003, 299(5615): 2064-2067.
pmid: 12663926 |
[16] | Heap I, Knight R. The occurrence of herbicide cross-resistance in a population of annual ryegrass, Lolium rigidum, resistant to diclofop-methyl[J]. Aust J Agric Res, 1986, 37(2): 149. |
[17] |
Kersten S, Rabanal FA, Herrmann J, et al. Deep haplotype analyses of target-site resistance locus ACCase in blackgrass enabled by pool-based amplicon sequencing[J]. Plant Biotechnol J, 2023, 21(6): 1240-1253.
doi: 10.1111/pbi.14033 pmid: 36807472 |
[18] |
Hamouzová K, Košnarová P, Salava J, et al. Mechanisms of resistance to acetolactate synthase-inhibiting herbicides in populations of Apera spica-venti from the Czech Republic[J]. Pest Manag Sci, 2014, 70(4): 541-548.
doi: 10.1002/ps.3563 pmid: 23893862 |
[19] | Li LX, Bi YL, Liu WT, et al. Molecular basis for resistance to fenoxaprop-p-ethyl in American sloughgrass(Beckmannia syzigachne Steud.)[J]. Pestic Biochem Physiol, 2013, 105(2): 118-121. |
[20] | Broster J, Koetz E, Wu HW. Herbicide resistance frequencies in ryegrass(Lolium spp.)and other grass species in Tasmania[J]. Plant Prot Q, 2012, 27: 36-42. |
[21] | Kumar V, Jha P. First report of Ser653Asn mutation endowing high-level resistance to imazamox in downy brome(Bromus tectorum L.)[J]. Pest Manag Sci, 2017, 73(12): 2585-2591. |
[22] | Xia WW, Pan L, Li J, et al. Molecular basis of ALS- and/or ACCase-inhibitor resistance in shortawn foxtail(Alopecurus aequalis Sobol.)[J]. Pestic Biochem Physiol, 2015, 122: 76-80. |
[23] | Beckie HJ, Tardif FJ. Herbicide cross resistance in weeds[J]. Crop Prot, 2012, 35: 15-28. |
[24] | Kaundun SS, Hutchings SJ, Dale RP, et al. Role of a novel I1781T mutation and other mechanisms in conferring resistance to acetyl-CoA carboxylase inhibiting herbicides in a black-grass population[J]. PLoS One, 2013, 8(7): e69568. |
[25] | Kaundun SS, Hutchings SJ, Dale RP, et al. Broad resistance to ACCase inhibiting herbicides in a ryegrass population is due only to a cysteine to arginine mutation in the target enzyme[J]. PLoS One, 2012, 7(6): e39759. |
[26] | Perotti VE, Larran AS, Palmieri VE, et al. Herbicide resistant weeds: a call to integrate conventional agricultural practices, molecular biology knowledge and new technologies[J]. Plant Sci, 2020, 290: 110255. |
[27] | Délye C. Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update[J]. Weed Sci, 2005, 53(5): 728-746. |
[28] | Délye C, Matéjicek A, Michel S. Cross-resistance patterns to ACCase-inhibiting herbicides conferred by mutant ACCase isoforms in Alopecurus myosuroides Huds.(black-grass), re-examined at the recommended herbicide field rate[J]. Pest Manag Sci, 2008, 64(11): 1179-1186. |
[29] | Petit C, Bay G, Pernin F, et al. Prevalence of cross- or multiple resistance to the acetyl-coenzyme A carboxylase inhibitors fenoxaprop, clodinafop and pinoxaden in black-grass(Alopecurus myosuroides Huds.)in France[J]. Pest Manag Sci, 2010, 66(2): 168-177. |
[30] |
Christoffers MJ, Berg ML, Messersmith CG. An isoleucine to leucine mutation in acetyl-CoA carboxylase confers herbicide resistance in wild oat[J]. Genome, 2002, 45(6): 1049-1056.
pmid: 12502249 |
[31] |
Délye C, Zhang XQ, Chalopin C, et al. An isoleucine residue within the carboxyl-transferase domain of multidomain acetyl-coenzyme A carboxylase is a major determinant of sensitivity to aryloxyphenoxypropionate but not to cyclohexanedione inhibitors[J]. Plant Physiol, 2003, 132(3): 1716-1723.
doi: 10.1104/pp.103.021139 pmid: 12857850 |
[32] | Yu Q, Collavo A, Zheng MQ, et al. Diversity of acetyl-coenzyme A carboxylase mutations in resistant Lolium populations: evaluation using clethodim[J]. Plant Physiol, 2007, 145(2): 547-558. |
[33] |
Liu WJ, Harrison DK, Chalupska D, et al. Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides[J]. Proc Natl Acad Sci USA, 2007, 104(9): 3627-3632.
pmid: 17360693 |
[34] | Zhao N, Ge LA, Yan YY, et al. Trp-1999-Ser mutation of acetyl-CoA carboxylase and cytochrome P450s-involved metabolism confer resistance to fenoxaprop-P-ethyl in Polypogon fugax[J]. Pest Manag Sci, 2019, 75(12): 3175-3183. |
[35] | Gherekhloo J, Osuna MD, De Prado R. Biochemical and molecular basis of resistance to ACCase-inhibiting herbicides in Iranian Phalaris minor populations[J]. Weed Res, 2012, 52(4): 367-372. |
[36] | Collavo A, Panozzo S, Lucchesi G, et al. Characterisation and management of Phalaris paradoxa resistant to ACCase-inhibitors[J]. Crop Prot, 2011, 30(3): 293-299. |
[37] |
Settles AM. EMS mutagenesis of maize pollen[J]. Methods Mol Biol, 2020, 2122: 25-33.
doi: 10.1007/978-1-0716-0342-0_3 pmid: 31975293 |
[38] | Ostlie MH, Haley S, Westra P, et al. Acetyl co-enzyme A carboxylase herbicide resistant plants: WO2012106321(A1)[P]. 2012-08-09. |
[39] | 唐晓艳, 邓兴旺, 周君莉, 等. 除草剂抗性突变体及其应用: CN108486070B[P]. 2022-05-27. |
Tang XY, Deng XW, Zhou JL, et al. Herbicide resistance mutant and its application: CN108486070B[P]. 2022-05-27. | |
[40] | Gengenbach BG, Somers DA, Wyse DL, et al. Method and an acetyl CoA carboxylase gene for conferring herbicide tolerance: US5498544A[P]. 1996-03-12. |
[41] | 张保龙, 王金彦, 凌溪铁. 一种水稻ACCase突变型基因及其在植物抗除草剂中的应用: CN109371000A[P]. 2019-02-22. |
Zhang BL, Wang JJY, Ling XT. A rice ACCase mutant gene and its application in plant herbicide resistance: CN109371000A[P]. 2019-02-22. | |
[42] |
Zhang R, Liu JX, Chai ZZ, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing[J]. Nat Plants, 2019, 5(5): 480-485.
doi: 10.1038/s41477-019-0405-0 pmid: 30988404 |
[43] |
Li C, Zong Y, Wang YP, et al. Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion[J]. Genome Biol, 2018, 19(1): 59.
doi: 10.1186/s13059-018-1443-z pmid: 29807545 |
[44] |
Liu XS, Qin RY, Li J, et al. A CRISPR-Cas9-mediated domain-specific base-editing screen enables functional assessment of ACCase variants in rice[J]. Plant Biotechnol J, 2020, 18(9): 1845-1847.
doi: 10.1111/pbi.13348 pmid: 31985873 |
[45] |
Zhang FG, Zhang Z, Wei Z, et al. Microbiome-conferred herbicides resistance[J]. New Phytol, 2024, 242(2): 327-330.
doi: 10.1111/nph.19574 pmid: 38320978 |
[46] | Suda H, Kubo T, Yoshimoto Y, et al. Transcriptionally linked simultaneous overexpression of P450 genes for broad-spectrum herbicide resistance[J]. Plant Physiol, 2023, 192(4): 3017-3029. |
[47] |
Li C, Zhang R, Meng XB, et al. Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nat Biotechnol, 2020, 38(7): 875-882.
doi: 10.1038/s41587-019-0393-7 pmid: 31932727 |
[48] |
Xu RF, Liu XS, Li J, et al. Identification of herbicide resistance OsACC1 mutations via in planta prime-editing-library screening in rice[J]. Nat Plants, 2021, 7(7): 888-892.
doi: 10.1038/s41477-021-00942-w pmid: 34112987 |
[49] | Sun C, Lei Y, Li BS, et al. Precise integration of large DNA sequences in plant genomes using PrimeRoot editors[J]. Nat Biotechnol, 2024, 42(2): 316-327. |
[50] | Yan J, Oyler-Castrillo P, Ravisankar P, et al. Improving prime editing with an endogenous small RNA-binding protein[J]. Nature, 2024, 628(8008): 639-647. |
[51] | 邱丽娟, 郭兵福, 郭勇, 等. 一种抗草甘膦转基因大豆及其制备方法与应用: CN105505981B[P]. 2018-12-15. |
Qiu LJ, Guo BF, Guo Y, et al. The preparation method and application of glyphosate-resistant transgenic soybean: CN105505981B[P]. 2018-12-15. | |
[52] | 张先文, 王东芳, 沈志成. 一种抗草甘膦融合基因、编码蛋白及其应用: CN106350532A[P]. 2017-1-15. |
Zhang XW, Wang DF, Shen ZC. The glyphosate-resistant fusion gene, encoding protein and its application: CN106350532A[P]. 2017-1-15. | |
[53] | Fartyal D, Agarwal A, James D, et al. Co-expression of P173S mutant rice EPSPS and igrA genes results in higher glyphosate tolerance in transgenic rice[J]. Front Plant Sci, 2018, 9: 144. |
[54] |
Li SY, Li PC, Li XY, et al. In maize, co-expression of GAT and GR79-EPSPS provides high glyphosate resistance, along with low glyphosate residues[J]. aBIOTECH, 2023, 4(4): 277-290.
doi: 10.1007/s42994-023-00114-8 pmid: 38106436 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||