生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 184-191.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0328
杨冲1,2(), 程莎莎2, 艾长丰2, 赵璇2, 刘孟军2()
收稿日期:
2024-04-07
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
刘孟军,男,博士,教授,研究方向:果树学;E-mail: lmj1234567@aliyun.com作者简介:
杨冲,女,博士,助理研究员,研究方向:果树学;E-mail: hbndyc@163.com
基金资助:
YANG Chong1,2(), CHENG Sha-sha2, AI Chang-feng2, ZHAO Xuan2, LIU Meng-jun2()
Received:
2024-04-07
Published:
2024-11-26
Online:
2024-12-19
摘要:
【目的】 ABFs(ABRE binding factors)/AREB(ABA responsive element binding)转录因子不仅参与植株的胁迫响应,还影响植株和果实的发育,了解其在枣果实发育过程中的作用,为深入研究枣ABF基因功能提供基础。【方法】 对枣ABF基因进行了全基因组鉴定,并对其理化分析、亚细胞定位、基因结构、基序、系统进化关系、启动子顺式作用元件及表达模式进行了分析。【结果】 在枣基因组共发现5个ABF基因,定位在5条不同假染色体上。ZjABF编码氨基酸序列长度为321-474 aa,等电点为7.75-9.85,亲水系数为-0.807- -0.592,5个成员均为亲水蛋白。不稳定系数为35.62-61.51。基因结构及基序分析表明枣ABF家族成员均存在UTR,分别含有3-5个外显子,6-7个motif。系统发育树将ABF家族分成了3个大类。启动子顺式作用元件分析表明,枣ABF基因家族启动子具有多种响应激素和非生物胁迫相关的顺式作用元件。通过对‘金丝小枣’和‘金魁王’果实发育不同阶段的转录组数据分析,除ZjABF4以外的ZjABFs均有不同的表达,表明枣ABF家族在果实发育过程中发挥了调控作用。利用同源蛋白预测了ZjABF3、ZjABF4和ZjABF5的互作蛋白。【结论】 枣ABF家族基因结构保守,启动子区域存在多个响应激素和非生物胁迫相关的顺式作用元件,在果实发育不同阶段有不同的表达模式。
杨冲, 程莎莎, 艾长丰, 赵璇, 刘孟军. 枣ABF/AREB基因家族鉴定及其在果实发育中的表达分析[J]. 生物技术通报, 2024, 40(11): 184-191.
YANG Chong, CHENG Sha-sha, AI Chang-feng, ZHAO Xuan, LIU Meng-jun. Identification of ABF/AREB Gene Family and Their Expression Analysis in Jujube Fruit[J]. Biotechnology Bulletin, 2024, 40(11): 184-191.
基因名称Gene name | 基因编号 Gene ID | 编码氨基酸长度 Length of encoded amino acids/aa | 蛋白质分子量 Molecular weight of protein/kD | 等电点 pI | 染色体定位 Chromosome location | 亲水性GRAVY | 不稳定系数 Instability index | 脂肪族氨基酸指数 Aliphatic index | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
ZjABF1 | XP_048337122.1 | 436 | 46.24 | 9.85 | Chr.9 | -0.614 | 52.33 | 66.93 | nucl: 14 |
ZjABF2 | XP_060673229.1 | 470 | 50.76 | 7..75 | Chr.5 | -0.592 | 35.62 | 68.09 | nucl: 14 |
ZjABF3 | XP_015898748.2 | 438 | 48.07 | 8.47 | Chr.11 | -0.787 | 61.51 | 63.88 | nucl: 14 |
ZjABF4 | XP_015872556.3 | 474 | 52.64 | 8.82 | Chr.10 | -0.798 | 55.84 | 64.58 | chlo: 6, pero: 5, nucl: 2.5, cyto_nucl: 2 |
ZjABF5 | XP_048326228.1 | 321 | 35.58 | 8.5 | Chr.8 | -0.807 | 59.61 | 66.88 | nucl: 14 |
表1 枣ABF的理化性质
Table 1 Physicochemical properties of jujube ABF
基因名称Gene name | 基因编号 Gene ID | 编码氨基酸长度 Length of encoded amino acids/aa | 蛋白质分子量 Molecular weight of protein/kD | 等电点 pI | 染色体定位 Chromosome location | 亲水性GRAVY | 不稳定系数 Instability index | 脂肪族氨基酸指数 Aliphatic index | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
ZjABF1 | XP_048337122.1 | 436 | 46.24 | 9.85 | Chr.9 | -0.614 | 52.33 | 66.93 | nucl: 14 |
ZjABF2 | XP_060673229.1 | 470 | 50.76 | 7..75 | Chr.5 | -0.592 | 35.62 | 68.09 | nucl: 14 |
ZjABF3 | XP_015898748.2 | 438 | 48.07 | 8.47 | Chr.11 | -0.787 | 61.51 | 63.88 | nucl: 14 |
ZjABF4 | XP_015872556.3 | 474 | 52.64 | 8.82 | Chr.10 | -0.798 | 55.84 | 64.58 | chlo: 6, pero: 5, nucl: 2.5, cyto_nucl: 2 |
ZjABF5 | XP_048326228.1 | 321 | 35.58 | 8.5 | Chr.8 | -0.807 | 59.61 | 66.88 | nucl: 14 |
图5 果实不同发育时期枣ABFs的表达分析 S1:幼果初期;S2:幼果中期;S3:硬核前期;S4:硬核期;S5:白熟期;S6:白熟后期;S7:四分之一着色期;S8:半红期;S9:全红期
Fig. 5 Expression analysis of ABFs at different fruit development stages S1: Early stage of young fruit. S2: Middle stage of young fruit. S3: Pre hard core stage. S4: Hard core stage. S5: White ripening stage. S6: Late stage of white ripening. S7: Quarter coloring stage. S8: Half-red stage. S9: Full-red stage
图6 枣ABFs的互作蛋白预测 A:ZjABF3的互作蛋白预测;B:ZjABF4的互作蛋白预测;C:ZjABF5的互作蛋白预测
Fig. 6 Interacting protein prediction of ABF in jujube A: The interacting protein prediction of ZjABF3. B: The interacting protein prediction of ZjABF4. C: The interacting protein prediction of ZjABF5
[1] | Liu MJ, Wang JR, Wang LL, et al. The historical and current research progress on jujube-a superfruit for the future[J]. Hortic Res, 2020, 7: 119. |
[2] | Romera-Branchat M, Severing E, Pocard C, et al. Functional divergence of the Arabidopsis florigen-interacting bZIP transcription factors FD and FDP[J]. Cell Rep, 2020, 31(9): 107717. |
[3] | Zou MJ, Guan YC, Ren HB, et al. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance[J]. Plant Mol Biol, 2008, 66(6): 675-683. |
[4] | Collin A, Daszkowska-Golec A, Szarejko I. Updates on the role of abscisic acid insensitive 5(ABI5)and abscisic acid-responsive element binding factors(ABFs)in ABA signaling in different developmental stages in plants[J]. Cells, 2021, 10(8): 1996. |
[5] | Brocard IM, Lynch TJ, Finkelstein RR. Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response[J]. Plant Physiol, 2002, 129(4): 1533-1543. |
[6] | Xiang Y, Tang N, Du H, et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiol, 2008, 148(4): 1938-1952. |
[7] | 洪方蕾, 陆瑶, 俞世姣, 等. 桂花OfABFs基因克隆和表达分析[J]. 浙江农林大学学报, 2023, 40(3): 481-491. |
Hong FL, Lu Y, Yu SJ, et al. Cloning and expression analysis of OfABFs gene in Osmanthus fragrans[J]. J Zhejiang A F Univ, 2023, 40(3): 481-491. | |
[8] | Li FF, Mei FM, Zhang YF, et al. Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis[J]. BMC Plant Biol, 2020, 20(1): 558. |
[9] | Liu TF, Zhou TT, Lian MT, et al. Genome-wide identification and characterization of the AREB/ABF/ABI5 subfamily members from Solanum tuberosum[J]. Int J Mol Sci, 2019, 20(2): 311. |
[10] | Yong X, Zheng TC, Zhuo XK, et al. Genome-wide identification, characterisation, and evolution of ABF/AREB subfamily in nine Rosaceae species and expression analysis in mei(Prunus mume)[J]. PeerJ, 2021, 9: e10785. |
[11] | 庞少萍, 董翠翠, 马岩岩, 等. CsAREB转录因子在柑橘果实发育中的作用[J]. 园艺学报, 2017, 44(3): 441-451. |
Pang SP, Dong CC, Ma YY, et al. The roles of two CsAREB transcription factors in the development of citrus fruit[J]. Acta Hortic Sin, 2017, 44(3): 441-451. | |
[12] | 杨玲. 烟草ABF转录因子基因的克隆及功能分析[D]. 重庆: 重庆大学, 2014. |
Yang L. Cloning and functional analysis of ABF transcription factor gene in Nicotiana tabacum[D]. Chongqing: Chongqing University, 2014. | |
[13] | 涂明星. 葡萄转录因子VlbZIP30抗旱功能及其调控机理研究[D]. 杨凌: 西北农林科技大学, 2021 |
Tu MX. Drought resistance function and regulation mechanism analysis of grapevine transcription factor VlbZIP30 gene[D]. Yangling: Northwest A&F University, 2021. | |
[14] | Yang XL, Yue YZ, Li HY, et al. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans[J]. Hortic Res, 2018, 5: 72. |
[15] | 郭树娟, 孙月, 郑昊元, 等. 小麦ABF/AREB/ABI5基因家族全基因组鉴定与表达分析[J]. 农业生物技术学报, 2023, 31(4): 667-681. |
Guo SJ, Sun Y, Zheng HY, et al. Genome-wide identification and expression analysis of ABF/AREB/ABI5 gene family in Wheat(Triticum aestivum)[J]. J Agric Biotechnol, 2023, 31(4): 667-681. | |
[16] | Mou WS, Li DD, Bu JW, et al. Comprehensive analysis of ABA effects on ethylene biosynthesis and signaling during tomato fruit ripening[J]. PLoS One, 2016, 11(4): e0154072. |
[17] | 牟望舒. 脱落酸及脱落酸-乙烯互作调控番茄果实成熟的效应与机理[D]. 杭州: 浙江大学, 2019. |
Mou WS. The roles and mechanism of abscisic acid and abscisic acid-ethylene crosstalk in the regulation of tomato fruit ripening[D]. Hangzhou: Zhejiang University, 2019. | |
[18] | 方燕. AREB/ABF/ABI5 基因家族调控草莓果实成熟机理解析[D]. 合肥: 安徽农业大学, 2020. |
Fang Y. Analysis of mechanism of strawberry fruit ripening regulated by AREB/ABF/ABI5 gene family[D]. Hefei: Anhui Agricultural University, 2020. | |
[19] | 苟琦敏, 王新文, 马建忠. 拟南芥ABI5亚家族转录因子-回顾与展望[J]. 植物生理学报, 2022, 58(6): 1068-1076. |
Gou QM, Wang XW, Ma JZ. The ABI5 subfamily transcription factors in Arabidopsis thaliana: retrospect and prospect[J]. Plant Physiol J, 2022, 58(6): 1068-1076. | |
[20] | Zhang Y, Gao WL, Li HT, et al. Genome-wide analysis of the bZIP gene family in Chinese jujube(Ziziphus jujuba Mill.)[J]. BMC Genomics, 2020, 21(1): 483. |
[21] | 李天杰, 吴颖, 高龙飞, 等. 蓝莓ABF转录因子VcABF2基因的克隆与表达分析[J]. 分子遗传育种, 2021: 1-14. |
Li TJ, Wu Y, Gao LF, et al. Cloning and expression analysis of ABF transcription factor gene VcABF2 in Blueberry[J]. Mol Plant Breed, 2021: 1-14. | |
[22] | 靳蜜静. 脱落酸处理对猕猴桃果实抗冷性的影响及转录因子Achn ABF1的功能研究[D]. 杨凌: 西北农林科技大学, 2021. |
Jin MJ. Effects of abscisic acid treatment on cold resistance of Kiwifruit and functional identification of transcription factor Achn ABF1[D]. Yangling: Northwest A&F University, 2021. | |
[23] | 徐子健. 脱落酸及转录因子SlAREB1调控番茄盐碱和低温抗性的机制研究[D]. 杨凌: 西北农林科技大学, 2022. |
Xu ZJ. The mechanism of abscisic acid and transcription factor SlAREB1 in regulating saline-alkaline and low-temperature tolerance in tomato[D]. Yangling: Northwest A&F University, 2022. | |
[24] | 王双成. 苹果属垂丝海棠MhABF和MhPYL基因的克隆及耐盐碱性功能鉴定[D]. 兰州: 甘肃农业大学, 2022. |
Wang SC. Cloning of MhABF and MhPYL genes and identification of their saline-alkali tolerance function in Malus halliana[D]. Lanzhou: Gansu Agricultural University, 2022. | |
[25] | 陈乃钰, 张国香, 张力爽, 等. ABF转录因子在植物响应非生物胁迫中的作用[J]. 植物遗传资源学报, 2021, 22(4): 930-938. |
Chen NY, Zhang GX, Zhang LS, et al. Chang-hong, The role of ABF transcription factors in response to abiotic stress in plant[J]. J Plant Genet Resour, 2021, 22(4): 930-938. | |
[26] | Contreras-López O, Vidal EA, Riveras E, et al. Spatiotemporal analysis identifies ABF2 and ABF3 as key hubs of endodermal response to nitrate[J]. Proc Natl Acad Sci USA, 2022, 119(4): e2107879119. |
[27] | Yang YL, Li HG, Wang J, et al. ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica[J]. J Exp Bot, 2020, 71(22): 7270-7285. |
[28] | Li XY, Liu X, Yao Y, et al. Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content[J]. Int J Mol Sci, 2013, 14(6): 12827-12842. |
[29] | Nitsch L, Kohlen W, Oplaat C, et al. ABA-deficiency results in reduced plant and fruit size in tomato[J]. J Plant Physiol, 2012, 169(9): 878-883. |
[30] | Sun L, Sun YF, Zhang M, et al. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato[J]. Plant Physiol, 2012, 158(1): 283-298. |
[31] | Wang SS, Saito T, Ohkawa K, et al. Abscisic acid is involved in aromatic ester biosynthesis related with ethylene in green apples[J]. J Plant Physiol, 2018, 221: 85-93. |
[32] | 崔春晓. 番茄成熟过程中ABA相关转录因子调控乙烯合成的研究[D]. 郑州: 河南工业大学, 2023. |
Cui CX. Regulations of ethylene synthesisby ABA-regulated transcription factors during tomato fruit ripening[D]. Zhenzhou: Henan University of Technology, 2023. | |
[33] | Wu Q, Tao XY, Ai XZ, et al. Contribution of abscisic acid to aromatic volatiles in cherry tomato(Solanum lycopersicum L.) fruit during postharvest ripening[J]. Plant Physiol Biochem, 2018, 130: 205-214. |
[34] | 邓璇. 转录因子MaJOINTLESS及上游调控因MaABI5、MaABF1在桑葚落果中的功能研究[D]. 重庆: 西南大学, 2023. |
Deng X. Study on the Function of transcription factor MaJOINTLESS and upstream regulatory factors MaABI5 and MaABF1 during fruit abscission in mulberry(Morus alba L.)[D]. Chongqing: Southwest University, 2023 | |
[35] | Feng G, Wu J, Xu Y, et al. High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis[J]. Plant Biotechnol J, 2021, 19: 1337-1353. |
[1] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
[2] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
[3] | 武帅, 辛燕妮, 买春海, 穆晓娅, 王敏, 岳爱琴, 赵晋忠, 吴慎杰, 杜维俊, 王利祥. 大豆GS基因家族全基因组鉴定及胁迫响应分析[J]. 生物技术通报, 2024, 40(8): 63-73. |
[4] | 刘蓉, 田闵玉, 李光泽, 谭成方, 阮颖, 刘春林. 甘蓝型油菜REVEILLE家族鉴定及诱导表达分析[J]. 生物技术通报, 2024, 40(6): 161-171. |
[5] | 李嘉欣, 李鸿燕, 刘丽娥, 张恬, 周武. 沙棘NRAMP基因家族鉴定及铅胁迫下表达分析[J]. 生物技术通报, 2024, 40(5): 191-202. |
[6] | 钟匀, 林春, 刘正杰, 董陈文华, 毛自朝, 李兴玉. 芦笋皂苷合成相关糖基转移酶基因克隆及原核表达分析[J]. 生物技术通报, 2024, 40(4): 255-263. |
[7] | 王艺清, 王涛, 韦朝领, 戴浩民, 曹士先, 孙威江, 曾雯. 茶树SMAS基因家族的鉴定及互作分析[J]. 生物技术通报, 2023, 39(4): 246-258. |
[8] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[9] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[10] | 郭志浩, 金泽鑫, 刘琦, 高利. 小麦矮腥黑粉菌效应蛋白g11335的生物信息学分析、亚细胞定位及毒性验证[J]. 生物技术通报, 2022, 38(8): 110-117. |
[11] | 于秋琳, 马婧怡, 赵盼, 孙鹏芳, 何玉美, 刘世彪, 郭惠红. 绞股蓝GpMIR156a和GpMIR166b的克隆与功能分析[J]. 生物技术通报, 2022, 38(7): 186-193. |
[12] | 陈佳敏, 刘永杰, 马锦绣, 李丹, 公杰, 赵昌平, 耿洪伟, 高世庆. 小麦组蛋白甲基化酶在杂交种中干旱胁迫表达模式分析[J]. 生物技术通报, 2022, 38(7): 51-61. |
[13] | 王楠, 张瑞, 潘阳阳, 何翃宏, 王靖雷, 崔燕, 余四九. 牦牛TGF-β1基因克隆及在雌性生殖系统主要器官中的表达定位[J]. 生物技术通报, 2022, 38(6): 279-290. |
[14] | 李宇航, 王兴平, 杨箭, 罗仍卓么, 任倩倩, 魏大为, 马云. miR-665在奶牛乳腺上皮细胞炎症中的表达及功能分析[J]. 生物技术通报, 2022, 38(5): 159-168. |
[15] | 李洋, 张晓天, 朴静子, 周如军, 李自博, 关海雯. 花生疮痂病菌蓝光受体EaWC 1基因克隆及生物信息学分析[J]. 生物技术通报, 2022, 38(5): 93-99. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||