生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 269-276.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0419
杨秉乾1(), 恽辰珂1, 常思源1,2(), 郭盛1, 张森1()
收稿日期:
2024-05-06
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
张森,男,博士,副教授,研究方向:中药资源化利用;E-mail: zhangsci@njucm.edu.cn;作者简介:
杨秉乾,男,硕士研究生,研究方向:中药资源化利用;E-mail: ybq20010329@163.com
基金资助:
YANG Bing-qian1(), YUN Chen-ke1, CHANG Si-yuan1,2(), GUO Sheng1, ZHANG Sen1()
Received:
2024-05-06
Published:
2024-11-26
Online:
2024-12-19
摘要:
【目的】 筛选可降解丹参(Salvia miltiorrhiza)药渣木质素的菌株并探究其酶学特性,以筛得菌株降解丹参药渣木质素以提高纤维素的酶解效率。【方法】 以丹参药渣表面自然生长的菌株为筛菌来源,通过碱性木素培养基和愈创木酚培养基进行初筛和复筛,利用添加丹参药渣的培养基验证产酶能力,优选产漆酶菌株。通过ITS序列分析对菌株进行鉴定。对分离菌株漆酶酶学特性进行研究。采用NREL法测定木质纤维素含量,利用商业纤维素酶探究酶解效果。【结果】 筛选出一株产漆酶且耐受丹参药渣的真菌MY-5,经ITS序列鉴定为猬木霉(Trichoderma erinaceum)。对漆酶酶学性质进行考察,漆酶最适反应温度为50℃,60℃下保温24 h后酶活保持在85.3%,4℃低温贮藏25 d酶活保持在80.7%;最适pH为5,在pH 4-8时保温24 h活性保持在90%以上;添加Cu2+、Mg2+和香兰素提高了漆酶活性,其中5 mmol/L Cu2+提高1.68倍;添加4%丹参药渣保温24 h后漆酶仍能保持90.6%的酶活。液态发酵20 d后丹参药渣木质素的降解率达到了36.3%,葡萄糖产量和最大产率分别提高了62.6%和81.0%。【结论】 筛选得到一株产漆酶菌株猬木霉MY-5,其漆酶热稳定性、低温贮藏稳定性、pH稳定性及丹参药渣耐受性良好,可以有效降解丹参药渣木质素,提高纤维素的酶解效率。
杨秉乾, 恽辰珂, 常思源, 郭盛, 张森. 丹参药渣木质素降解菌的分离及酶学特性[J]. 生物技术通报, 2024, 40(11): 269-276.
YANG Bing-qian, YUN Chen-ke, CHANG Si-yuan, GUO Sheng, ZHANG Sen. Isolation and Enzymatic Characterization of Fungus Degrading Salvia miltiorrhiza Residue Lignin[J]. Biotechnology Bulletin, 2024, 40(11): 269-276.
图2 4株真菌发酵玉米秸秆和丹参药渣漆酶酶活 图中误差线表示标准偏差。小写字母表示不同组间差异达到(P<0.05)显著水平,下同
Fig. 2 Laccase activity in 4 fungi fermenting in the corn straw and SMR fermentation The error line in the figure refers to the standard deviation. The lowercase letters indicate that the difference among different groups reached a significant level(P < 0.05). The same below
图6 金属离子及诱导剂对漆酶酶活的影响 组1:金属离子浓度1 mmol/L,香兰素浓度0.01 g/L;组2:金属离子浓度5 mmol/L,香兰素浓度0.05 g/L
Fig. 6 Effects of metal ions and inducers on laccase activity Group 1: Metal ion concentration is 1 mmol/L and vanillin concentration is 0.01 g/L. Group 2: Metal ion concentration is 5 mmol/L and vanillin concentration is 0.05 g/L
组别Group | 酸溶性木质素Acid soluble lignin/% | 酸不溶性木质素Acid insoluble lignin/% | 纤维素Cellulose/% | 半纤维素Hemicellulose/% |
---|---|---|---|---|
未处理Untreated | 4.53±1.06a | 10.58±1.36a | 17.46±1.27a | 14.02±1.67a |
处理后Treated | 3.07±0.59b | 6.56±0.47b | 15.06±0.92b | 7.32±0.71b |
表1 发酵前后丹参药渣木质纤维素含量变化
Table 1 Lignocellulose content changes in SMR before and after fermentation
组别Group | 酸溶性木质素Acid soluble lignin/% | 酸不溶性木质素Acid insoluble lignin/% | 纤维素Cellulose/% | 半纤维素Hemicellulose/% |
---|---|---|---|---|
未处理Untreated | 4.53±1.06a | 10.58±1.36a | 17.46±1.27a | 14.02±1.67a |
处理后Treated | 3.07±0.59b | 6.56±0.47b | 15.06±0.92b | 7.32±0.71b |
[1] | Xiao LK, Zhao AY, Qiu J, et al. Comprehensive reutilization of herbal waste: Coproduction of magnolol, honokiol, and β-amyrin from Magnolia officinalis residue[J]. Green Energy Environ, 2024, 9(2): 403-412. |
[2] | 刘佳妮, 王硕, 白米雪, 等. 响应面法优化丹参药渣多糖提取工艺及其抗氧化活性研究[J]. 时珍国医国药, 2017, 28(2): 454-457. |
Liu JN, Wang S, Bai MX, et al. Optimization of extraction process and antioxidant activity of polysaccharide from Salvia miltiorrhiza residue by response surface methodology[J]. Lishizhen Med Mater Med Res, 2017, 28(2): 454-457. | |
[3] | Wang ZK, Liu YM, Zhong JL, et al. A waste-free biorefinery pathway to the valorisation of Chinese hickory shell through alkaline hydrogen peroxide pretreatment[J]. Chem Eng J, 2023, 476: 146657. |
[4] | Choolaei Z, Flick R, Khusnutdinova AN, et al. Lignin-oxidizing activity of bacterial laccases characterized using soluble substrates and polymeric lignin[J]. J Biotechnol, 2021, 325: 128-137. |
[5] | 韩文清, 王涵, 何媛媛, 等. 丹参药渣栽培糙皮侧耳和毛头鬼伞[J]. 食用菌学报, 2016, 23(4): 20-23. |
Han WQ, Wang H, He YY, et al. Cultivation of Pleurotus ostreatus and Coprinus comatus using salviae miltiorrhiza residues[J]. Acta Edulis Fungi, 2016, 23(4): 20-23. | |
[6] | 姜媛媛. 丹参药渣多糖的提取及其生物活性和安全性评价[D]. 雅安: 四川农业大学, 2016. |
Jiang YY. Extraction, bioactivities and safety evaluation of polysaccharide isolated from Salvia miltiorrhiza bunge residue[D]. Ya'an: Sichuan Agricultural University, 2016. | |
[7] | Janusz G, Pawlik A, Świderska-Burek U, et al. Laccase properties, physiological functions, and evolution[J]. Int J Mol Sci, 2020, 21(3): 966. |
[8] | Wang JQ, Yin R, Hashizume Y, et al. Ergosterol and its metabolites induce ligninolytic activity in the lignin-degrading fungus Phanerochaete sordida YK-624[J]. J Fungi, 2023, 9(9): 951. |
[9] | 杜珂珂, 雍宬, 孙恩惠, 等. 生物预处理秸秆纤维特性及复合材料的性能研究[J]. 浙江农林大学学报, 2022, 39(4): 869-875. |
Du KK, Yong C, Sun EH, et al. Properties of bio-pretreated straw fiber and its composite materials[J]. J Zhejiang A F Univ, 2022, 39(4): 869-875. | |
[10] | Mtibaà R, Barriuso J, de Eugenio L, et al. Purification and characterization of a fungal laccase from the ascomycete Thielavia sp. and its role in the decolorization of a recalcitrant dye[J]. Int J Biol Macromol, 2018, 120(Pt B): 1744-1751. |
[11] | George J, Rajendran DS, Senthil Kumar P, et al. Efficient decolorization and detoxification of triarylmethane and azo dyes by porous-cross-linked enzyme aggregates of Pleurotus ostreatus laccase[J]. Chemosphere, 2023, 313: 137612. |
[12] | Ding CH, Wang X, Li MX. Evaluation of six white-rot fungal pretreatments on corn stover for the production of cellulolytic and ligninolytic enzymes, reducing sugars, and ethanol[J]. Appl Microbiol Biotechnol, 2019, 103(14): 5641-5652. |
[13] | Zhang ST, Dong ZJ, Shi J, et al. Enzymatic hydrolysis of corn stover lignin by laccase, lignin peroxidase, and manganese peroxidase[J]. Bioresour Technol, 2022, 361: 127699. |
[14] | Giacobbe S, Pezzella C, et al. Laccase pretreatment for agrofood wastes valorization[J]. Bioresour Technol, 2018, 265: 59-65. |
[15] | 郑艳萍, 袁琪, 李伟东, 等. 丹参药渣的功能组分及体外抗氧化活性[J]. 生物加工过程, 2021, 19(3): 263-267, 273. |
Zheng YP, Yuan Q, Li WD, et al. Antioxidative component in Salvia miltiorrhiza residues and their in vitro antioxidant activity[J]. Chin J Bioprocess Eng, 2021, 19(3): 263-267, 273. | |
[16] | 戴新新, 宿树兰, 郭盛, 等. 丹参酮类成分的生物活性与应用开发研究进展[J]. 中草药, 2017, 48(7): 1442-1448. |
Dai XX, Su SL, Guo S, et al. Research progress on biological activity and application development of tanshinones[J]. Chin Tradit Herb Drugs, 2017, 48(7): 1442-1448. | |
[17] | 邱首哲, 曾飞, 张森, 等. 丹参药渣等不同类型中药固废发酵产纤维素酶研究[J]. 中国中药杂志, 2020, 45(4): 890-895. |
Qiu SZ, Zeng F, Zhang S, et al. Fermentation of cellulase with multiple types of Salvia miltiorrhiza residues and other solid wastes from Chinese materia medica industrialization[J]. China J Chin Mater Med, 2020, 45(4): 890-895. | |
[18] | Li HN, Xiao WJ, Liu JS, et al. Combination strategy of laccase pretreatment and rhamnolipid addition enhance ethanol production in simultaneous saccharification and fermentation of corn stover[J]. Bioresour Technol, 2022, 345: 126414. |
[19] | Bhattacharya SS, Banerjee R. Laccase mediated biodegradation of 2,4-dichlorophenol using response surface methodology[J]. Chemosphere, 2008, 73(1): 81-85. |
[20] | 张红漫, 郑荣平, 陈敬文, 等. NREL法测定木质纤维素原料组分的含量[J]. 分析试验室, 2010, 29(11): 15-18. |
Zhang HM, Zheng RP, Chen JW, et al. Investigation on the determination of lignocellulosics components by NREL method[J]. Chin J Anal Lab, 2010, 29(11): 15-18. | |
[21] | Wang Y, Cai CJ, Lu JH, et al. Efficient crop straws biotreatment using the fungus Cerrena unicolor GC.u01[J]. AMB Express, 2024, 14(1): 28. |
[22] | Yang QZ, Tang W, Li L, et al. Enhancing enzymatic hydrolysis of waste sunflower straw by clean hydrothermal pretreatment[J]. Bioresour Technol, 2023, 383: 129236. |
[23] | Wang CX, Su XY, Sun W, et al. Efficient production of succinic acid from herbal extraction residue hydrolysate[J]. Bioresour Technol, 2018, 265: 443-449. |
[24] | Zhang S, Chang SY, Xiao P, et al. Enzymatic in situ saccharification of herbal extraction residue by a medicinal herbal-tolerant cellulase[J]. Bioresour Technol, 2019, 287: 121417. |
[25] | Li T, Chu XX, Yuan ZT, et al. Biochemical and structural properties of a high-temperature-active laccase from Bacillus pumilus and its application in the decolorization of food dyes[J]. Foods, 2022, 11(10): 1387. |
[26] | Qin P, Wu YT, Adil B, et al. Optimization of laccase from Ganoderma lucidum decolorizing remazol brilliant blue R and Glac1 as main laccase-contributing gene[J]. Molecules, 2019, 24(21): 3914. |
[27] | Umar A, Ahmed S. Optimization, purification and characterization of laccase from Ganoderma leucocontextum along with its phylogenetic relationship[J]. Sci Rep, 2022, 12: 2416. |
[28] | Wiśniewska KM, Twarda-Clapa A, Białkowska AM. Novel cold-adapted recombinant laccase KbLcc1 from Kabatiella bupleuri G3 IBMiP as a green catalyst in biotransformation[J]. Int J Mol Sci, 2021, 22(17): 9593. |
[29] | Ghose A, Gupta D, Nuzelu V, et al. Optimization of laccase enzyme extraction from spent mushroom waste of Pleurotus Florida through ANN-PSO modeling: an ecofriendly and economical approach[J]. Environ Res, 2023, 222: 115345. |
[30] | Torres-Farradá G, Manzano León AM, Rineau F, et al. Diversity of ligninolytic enzymes and their genes in strains of the genus Ganoderma: applicable for biodegradation of xenobiotic compounds?[J]. Front Microbiol, 2017, 8: 898. |
[31] | Kepp KP. Halide binding and inhibition of laccase copper clusters: the role of reorganization energy[J]. Inorg Chem, 2015, 54(2): 476-483. |
[32] | Sharghi S, Ahmadi FS, Kakhki AM, et al. Copper increases laccase gene transcription and extracellular laccase activity in Pleurotus eryngii KS004[J]. Braz J Microbiol, 2024, 55(1): 111-116. |
[33] | 陈俊文, 刘庆华, 庞学勇. 一株厚壁隔孢伏革菌的筛选及木质纤维素降解特性[J]. 西南农业学报, 2023, 36(11): 2491-2499. |
Chen JW, Liu QH, Pang XY. Screening of a Peniophora crassitunicata and its lignocellulosic degradation characteristics[J]. Southwest China J Agric Sci, 2023, 36(11): 2491-2499. | |
[34] | 张芳芳, 张桐, 等. 高效木质素降解菌的筛选及其对玉米秸秆的降解效果[J]. 菌物学报, 2021, 40(7): 1869-1880. |
Zhang FF, Zhang T, et al. Screening of efficient lignin-degrading fungal strains and their degradation on cornstalk[J]. Mycosystema, 2021, 40(7): 1869-1880. |
[1] | 乔烨, 张楠, 杨建花, 张翠英, 朱蕾蕾. 糖磷酸酶的挖掘及其酶学性质研究[J]. 生物技术通报, 2024, 40(7): 299-306. |
[2] | 魏婷柳, 苗华彪, 吴倩, 黄遵锡. 漆酶BmLac的异源表达、酶学特性及棉酚降解的研究[J]. 生物技术通报, 2023, 39(12): 320-328. |
[3] | 张开平, 刘燕丽, 涂绵亮, 李继伟, 吴文标. 烟曲霉A-16产纤维素酶工艺优化及酶学特性[J]. 生物技术通报, 2022, 38(9): 215-225. |
[4] | 王雨辰, 丁尊丹, 关菲菲, 田健, 刘国安, 伍宁丰. 耐热漆酶ba4基因鉴定与酶学性质分析[J]. 生物技术通报, 2022, 38(8): 252-260. |
[5] | 付巧, 林啟兰, 薛强, 熊海容, 王亚伟. N端截短CBM41对枯草芽孢杆菌来源普鲁兰酶酶学性质的影响[J]. 生物技术通报, 2022, 38(6): 245-251. |
[6] | 贾晨波, 苏一黄, 马秀梅, 王春利, 徐春燕. 端梗霉Z45产漆酶培养基的优化及其对染料的脱色[J]. 生物技术通报, 2022, 38(6): 252-260. |
[7] | 毛国涛, 王杰, 王凯, 王方园, 曹乐言, 张宏森, 宋安东. 水生栖热菌漆酶TaLac的性质分析及对孔雀石绿染料的脱除[J]. 生物技术通报, 2022, 38(4): 261-268. |
[8] | 韩东晶, 王志花, 周宁, 刘国庆, 杨少华, 汪文君. 白蚁菌圃中木质素降解菌的筛选及降解效果[J]. 生物技术通报, 2022, 38(3): 113-120. |
[9] | 田嘉慧, 封佳丽, 卢俊桦, 毛林静, 胡著然, 王莹, 楚杰. 一色齿毛菌漆酶LacT-1的分离纯化与性质研究[J]. 生物技术通报, 2021, 37(8): 186-194. |
[10] | 陈明雨, 倪烜, 司友斌, 孙凯. 固定化真菌漆酶在环境有机污染修复中的应用研究进展[J]. 生物技术通报, 2021, 37(6): 244-258. |
[11] | 熊雪, 李鹏, 张贵合, 向准, 陶文广, 周光燕, 和耀威. 不同栽培基质诱导对香菇液体发酵产漆酶活性的影响[J]. 生物技术通报, 2021, 37(12): 50-59. |
[12] | 王豪, 唐禄鑫, 马鸿飞, 钱坤, 司静, 崔宝凯. 东方栓孔菌漆酶的固定化及其对不同类型染料的脱色作用[J]. 生物技术通报, 2021, 37(11): 142-157. |
[13] | 陈慧玲, 张青云, 孙凯. 漆酶介导生物体内酚类氧化偶联的基本原理及其在绿色合成中的应用[J]. 生物技术通报, 2020, 36(5): 193-204. |
[14] | 孙凯, 陈正杰, 汪登洋, 束茹玉, 吴吉, 韦凡. 固定化漆酶去除废水中双酚A[J]. 生物技术通报, 2020, 36(12): 188-198. |
[15] | 吴怡, 马鸿飞, 曹永佳, 司静, 崔宝凯. 白腐真菌落叶松锈迷孔菌产漆酶液体培养基的优化及其对染料的脱色作用[J]. 生物技术通报, 2020, 36(1): 45-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||