生物技术通报 ›› 2025, Vol. 41 ›› Issue (1): 120-131.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0525
刘平阳1(), 刘占芳2(
), 周红2, 张冠男2, 孙振文2, 李亚军2, 周正2, 刘耀1,2(
)
收稿日期:
2024-06-02
出版日期:
2025-01-26
发布日期:
2025-01-22
通讯作者:
刘占芳,女,博士,研究员,研究方向:理化检验;E-mail: liuzhanfang2001@163.com;作者简介:
刘平阳,男,博士研究生,研究方向:理化检验;E-mail: 15026986915@163.com
基金资助:
LIU Ping-yang1(), LIU Zhan-fang2(
), ZHOU Hong2, ZHANG Guan-nan2, SUN Zhen-wen2, LI Ya-jun2, ZHOU Zheng2, LIU Yao1,2(
)
Received:
2024-06-02
Published:
2025-01-26
Online:
2025-01-22
摘要:
【目的】开发一种基于气相色谱-质谱联用技术(gas chromatography-mass spectrometry, GC-MS)结合多元分辨与多元数据分析的综合方法,以实现对法庭科学中常见老化动植物油脂的快速、准确鉴别,特别是针对腐败降解后脂肪酸组成复杂、难以通过传统谱图比对区分的样品。【方法】首先,采用直观推导式演进投影法(heuristic evolving latent projection, HELP)对GC-MS采集的复杂重叠峰进行解析,分离并提取出动植物油脂中各化学组分的纯色谱图和纯质谱图。随后,运用层次聚类分析(hierarchical cluster analysis, HCA)和主成分分析(principal component analysis, PCA)两种无监督学习方法,对附着于5种不同载体上、经60℃老化36 d后的13种动植物油脂的GC-MS数据进行降维和聚类分析,以探索其种属间的差异。进一步地,采用正交偏最小二乘判别分析(orthogonal partial least squares-discriminant analysis, OPLS-DA)这一有监督学习方法,对油脂样品的地域来源及品牌进行快速鉴别。【结果】HCA和PCA分析结果显示,该方法能够有效区分出老化后动植物油脂的种属类别,但在进一步区分不同地区或品牌的油脂时存在局限性。而OPLS-DA模型则展现出更高的分类精度,成功实现了对不同地区或品牌老化动植物油脂的快速准确鉴别。【结论】通过GC-MS结合HELP多元分辨技术及HCA、PCA、OPLS-DA分析方法,为法庭科学中老化动植物油脂的鉴别提供了一种高效、准确的技术方案。该方法有效解决了油脂腐败降解复杂性问题,并实现了对不同地区或品牌油脂的快速准确鉴别。
刘平阳, 刘占芳, 周红, 张冠男, 孙振文, 李亚军, 周正, 刘耀. 多元数据分析方法在解释GC-MS动植物油脂数据中的应用[J]. 生物技术通报, 2025, 41(1): 120-131.
LIU Ping-yang, LIU Zhan-fang, ZHOU Hong, ZHANG Guan-nan, SUN Zhen-wen, LI Ya-jun, ZHOU Zheng, LIU Yao. Multivariate Data Analysis in the Interpretation of GC-MS Data of Vegetable Oils and Animal Fats[J]. Biotechnology Bulletin, 2025, 41(1): 120-131.
种类Category | 产地/品牌 Origin/Brand | 样本数量 Samples | 分组 Group | 种类 Category | 产地/品牌 Origin/Brand | 样本数量 Samples | 分组 Group | |
---|---|---|---|---|---|---|---|---|
Soybean oil | Inner Mongolia | 8 | A | Tung oil | Henan Province | 8 | G | |
Heilongjiang Province | 8 | Hubei Province | 8 | |||||
Anhui Province | 8 | Shanghai City | 8 | |||||
Shandong Province | 8 | Castor oil | Hebei Province | 8 | H | |||
Sichuan Province | 8 | India/ Moutain rose herbs | 8 | |||||
Guangdong Province | 8 | Egypt/ Ruifantine | 8 | |||||
Shanxi Province | 8 | Hebei Province/Yanwei | 8 | |||||
Yunnan Province | 8 | Henan Province/Huangjia | 8 | |||||
Jilin Province | 8 | Guangdong Province | 8 | |||||
Hubei Province | 8 | Butter | Henan Province | 8 | I | |||
Olive oil | Spain/Oliveira | 8 | B | Guangdong Province | 8 | |||
Italy/Philippe Berry | 8 | Australia | 8 | |||||
Spain/Ajinomoto | 8 | Inner Mongolia | 8 | |||||
Spain/Obera | 8 | Shandong Province | 8 | |||||
Spain/Earl | 8 | Beijing City | 8 | |||||
Spain/Omanti | 8 | Sichuan Province | 8 | |||||
Spain/Borges | 8 | Sheep oil | Shanghai City | 8 | J | |||
Sunflower oil | Beijing City | 8 | C | Gansu Province | 8 | |||
Ukraine/HADAY | 8 | Xinjiang Uygur Autonomous Region | 8 | |||||
Europe/COFCO | 8 | Jiangsu Province | 8 | |||||
Europe/Arawana | 8 | Ningxia Hui Autonomous Region | 8 | |||||
Ukraine/Dianxue | 8 | Shandong Province | 8 | |||||
Russia/Red | 8 | Inner Mongolia | 8 | |||||
Ukraine/Qiandaoyuan | 8 | Beijing City | 8 | |||||
Peanut oil | Shandong Province/Luhua | 8 | D | Shandong Province | 8 | |||
Inner Mongolia | 8 | Chicken oil | Yongjia/Sichuan Province | 8 | K | |||
Shandong Province | 8 | Jinluo/Shandong Province | 8 | |||||
Yunnan Province | 8 | Duck oil | Beijing City | 8 | L | |||
Guangdong Province | 8 | Lard | Inner Mongolia | 8 | M | |||
Beijing City | 8 | Xizang | 8 | |||||
Palm oil | Guangdong Province | 8 | E | Heilongjiang Province | 8 | |||
Indonesia | 8 | Hubei Province | 8 | |||||
Brazil/ TMEPEREX | 8 | Guangdong Province | 8 | |||||
Thailand/Huarui | 8 | Beijing City | 8 | |||||
Malaysia/Tianyijia | 8 | Guizhou Province | 8 | |||||
Linseed oil | Inner Mongolia | 8 | F | Sichuan Province | 8 | |||
Ningxia Hui Autonomous Region/Haoyu | 8 | Gansu Province | 8 | |||||
Ningxia Hui Autonomous Region/Yixiayuan | 8 | Yunnan Province | 8 | |||||
China/Yuedushoufang | 8 | |||||||
Russia/Fuyide | 8 | |||||||
China/Qiumanxian | 8 |
表1 收集到的动植物油脂样本
Table 1 Vegetable oils and animal fats samples collected in this study
种类Category | 产地/品牌 Origin/Brand | 样本数量 Samples | 分组 Group | 种类 Category | 产地/品牌 Origin/Brand | 样本数量 Samples | 分组 Group | |
---|---|---|---|---|---|---|---|---|
Soybean oil | Inner Mongolia | 8 | A | Tung oil | Henan Province | 8 | G | |
Heilongjiang Province | 8 | Hubei Province | 8 | |||||
Anhui Province | 8 | Shanghai City | 8 | |||||
Shandong Province | 8 | Castor oil | Hebei Province | 8 | H | |||
Sichuan Province | 8 | India/ Moutain rose herbs | 8 | |||||
Guangdong Province | 8 | Egypt/ Ruifantine | 8 | |||||
Shanxi Province | 8 | Hebei Province/Yanwei | 8 | |||||
Yunnan Province | 8 | Henan Province/Huangjia | 8 | |||||
Jilin Province | 8 | Guangdong Province | 8 | |||||
Hubei Province | 8 | Butter | Henan Province | 8 | I | |||
Olive oil | Spain/Oliveira | 8 | B | Guangdong Province | 8 | |||
Italy/Philippe Berry | 8 | Australia | 8 | |||||
Spain/Ajinomoto | 8 | Inner Mongolia | 8 | |||||
Spain/Obera | 8 | Shandong Province | 8 | |||||
Spain/Earl | 8 | Beijing City | 8 | |||||
Spain/Omanti | 8 | Sichuan Province | 8 | |||||
Spain/Borges | 8 | Sheep oil | Shanghai City | 8 | J | |||
Sunflower oil | Beijing City | 8 | C | Gansu Province | 8 | |||
Ukraine/HADAY | 8 | Xinjiang Uygur Autonomous Region | 8 | |||||
Europe/COFCO | 8 | Jiangsu Province | 8 | |||||
Europe/Arawana | 8 | Ningxia Hui Autonomous Region | 8 | |||||
Ukraine/Dianxue | 8 | Shandong Province | 8 | |||||
Russia/Red | 8 | Inner Mongolia | 8 | |||||
Ukraine/Qiandaoyuan | 8 | Beijing City | 8 | |||||
Peanut oil | Shandong Province/Luhua | 8 | D | Shandong Province | 8 | |||
Inner Mongolia | 8 | Chicken oil | Yongjia/Sichuan Province | 8 | K | |||
Shandong Province | 8 | Jinluo/Shandong Province | 8 | |||||
Yunnan Province | 8 | Duck oil | Beijing City | 8 | L | |||
Guangdong Province | 8 | Lard | Inner Mongolia | 8 | M | |||
Beijing City | 8 | Xizang | 8 | |||||
Palm oil | Guangdong Province | 8 | E | Heilongjiang Province | 8 | |||
Indonesia | 8 | Hubei Province | 8 | |||||
Brazil/ TMEPEREX | 8 | Guangdong Province | 8 | |||||
Thailand/Huarui | 8 | Beijing City | 8 | |||||
Malaysia/Tianyijia | 8 | Guizhou Province | 8 | |||||
Linseed oil | Inner Mongolia | 8 | F | Sichuan Province | 8 | |||
Ningxia Hui Autonomous Region/Haoyu | 8 | Gansu Province | 8 | |||||
Ningxia Hui Autonomous Region/Yixiayuan | 8 | Yunnan Province | 8 | |||||
China/Yuedushoufang | 8 | |||||||
Russia/Fuyide | 8 | |||||||
China/Qiumanxian | 8 |
图1 动植物油脂的色谱与质谱特征分析及其地域差异 A:老化前13种动植物油脂的3D总离子流色谱图;B:棕榈酸甲酯的质谱图;C:硬脂酸甲酯的质谱图;D:油酸甲酯的质谱图;E:亚油酸甲酯的质谱图; F:老化前江苏、新疆和山东地区羊油脂色谱图比较
Fig. 1 Analysis of the chromatographic and mass spectrometric characteristics of vegetable oils and animal fats and their regional differences A: TIC of 13 different types of vegetable oils and animal fats before aging. B: Mass spectrometry of methyl palmitate. C: Mass spectrometry of methyl stearate. D: Mass spectrometry of methyl oleate. E: Mass spectrometry of methyl linoleate. F: Comparison of chromatograms of sheep oil from Jiangsu Province, Xinjiang Uygur Autonomous Region, and Shandong Province before aging
图2 不同老化条件下橄榄油脂脂肪酸组成及其变化的GC-MS分析 A:在60℃恒温箱中,0、6、12、18、24、30和36 d的橄榄油脂脂肪酸含量变化;B:在60℃恒温箱中,0、6、12、18、24、30和36 d的橄榄油脂饱和脂肪酸(SFA)和不饱和脂肪酸(UFA)变化趋势;C:新鲜橄榄油脂的GC-MS色谱图;D-F:在实验台上空气(25℃)暴露6、18和36 d的老化橄榄油脂GC-MS色谱图;G-I:在恒温箱(60℃)中6、18、36 d的老化橄榄油脂GC-MS色谱图。载体包括A4纸、瓦楞纸、海绵、土壤和地板革,数据取它们的平均值(n=3)
Fig. 2 GC-MS analysis of fatty acid composition and its changes of olive oil under different aging conditions A: Changes of fatty acid composition of olive oil at 0, 6, 12, 18, 24, 30, and 36 d in the incubator of 60℃. B: The trend of changes of saturated fatty acids and unsaturated fatty acids of olive oil at 0, 6, 12, 18, 24, 30, and 36 d in the incubator of 60℃. C: GC-MS chromatogram of fresh olive oil. D-F: GC-MS chromatogram of aged olive oil placed on the experimental bench after 6, 18, and 36 d of indoor air exposure. G-I: GC-MS chromatogram of aged olive oil placed in the incubator of 60℃ after 6, 18, and 36 d. The carrier includes A4 paper, corrugated paper, sponge, soil, and floor leather, and the data are taken as their average values(n=3)
图3 数据不平衡处理原理示意图 A:SMOTE生成样本示意图;B:Tomek links原理示意图;C:SMOTE-Tomek links的原理示意图
Fig. 3 Schematic diagram of data imbalance handling principles A: Schematic diagram of SMOTE generated samples. B: Schematic diagram of Tomek links. C: Schematic diagram of SMOTE-Tomek links
图4 动植物油脂的层次聚类图 a:13种动植物油脂的层次聚类图;b:5种动物油脂的层次聚类图;c:8种植物油脂的层次聚类图。载体包括A4纸、瓦楞纸、海绵、土壤和地板革,数据取它们的平均值(n=3);A:大豆油脂;B:橄榄油脂;C:葵花籽油脂;D:花生油脂;E:棕榈油脂;F:亚麻籽油脂;G:桐油脂;H:蓖麻油脂;I:牛油脂;J:羊油脂;K:鸡油脂;L:鸭油脂;M:猪油脂
Fig. 4 HCA of vegetable oils and animal fats a: HCA of 13 different types of vegetable oils and animal fats. b: HCA of 5 different types of animal fats. c: HCA of 8 different types of vegetable oils. The carrier includes A4 paper, corrugated paper, sponge, soil, and floor leather, and the data is taken as the average value(n=3). A: Soybean oil. B: Olive oil. C: Sunflower oil. D: Peanut oil. E: Palm oil. F: Linseed oil. G: Tung oil. H: Castor oil. I: Butter. J: Sheep oil. K: Chicken oil. L: Duck oil. M: Lard
图5 动植物油脂的HELP解析及其主成分分析 A:老化(60℃ 36 d)桐油脂的GC-MS总离子流色谱图及局部放大图;B:老化桐油脂24.967-25.127 min的总离子流色谱图;C:老化桐油脂24.967-25.127 min的二维数据图;D:老化桐油脂24.967-25.127 min的秩图[虚线下方的线表示噪声水平,虚线上方的线表示特征值情况(化合物数量)];E:经过HELP方法解析后纯组分色谱图;F:在5种载体(海绵、A4纸、地板革、土壤和瓦楞纸)上老化13种动植物油脂的PCA得分图,R2X(cum)= 0.859,Q2(cum)= 0.815;G:其所对应的PCA载荷图。载体包括A4纸、瓦楞纸、海绵、土壤和地板革,数据取它们的平均值(n=3)
Fig. 5 HELP analysis of vegetable oils and animal fats and their principal component analysis A: GC-MS total ion flow chromatogram and local magnification of aged(60℃ 36 d)tung oil. B: Total ion flow chromatogram of aged tung oil between 24.967-25.127 min. C: Two-dimensional data graph of aged tung oil between 24.967-25.127 min. D: Rank plot of aged tung oil between 24.967-25.127 min[Lines below the dotted line indicate noise level, and lines above dotted line indicate the local ranks(Number of compounds)]. E: The chromatogram of pure compound was analyzed by the HELP method. F: PCA score plot of 13 vegetable oils and animal fats aged on 5 carriers(sponge, A4 printer paper, floor leather, soil, and corrugated paper), with R2X(cum)=0.859 and Q2(cum)=0.815. G: The corresponding PCA load diagram. The carrier includes A4 paper, corrugated paper, sponge, soil, and floor leather, and the data are taken as their average values(n=3)
图6 多省份老化(60℃ 36 d)羊油脂的PCA与OPLS-DA A:8省(甘肃、内蒙古、宁夏、江苏、新疆、北京、上海和山东)羊油脂(60℃ 36 d)的PCA模型;B:8省(甘肃、内蒙古、宁夏、江苏、新疆、北京、上海、山东)羊油脂(60℃ 36 d)的OPLS-DA模型;C:OPLS-DA模型置换检验结果图;D:OPLS-DA的模型参数图。载体包括A4纸、瓦楞纸、海绵、土壤和地板革,数据取它们的平均值(n=3)
Fig. 6 PCA and OPLS-DA of aged sheep oil(60℃ 36 d)in 8 provinces A: PCA model of aged sheep oil(60℃ 36 d)in 8 provinces(Gansu, Inner Mongolia, Ningxia, Jiangsu, Xinjiang, Beijing, Shanghai, and Shandong). B: OPLS-DA model of aged sheep oil(60℃ 36 d)in 8 provinces(Gansu, Inner Mongolia, Ningxia, Jiangsu, Xinjiang, Beijing, Shanghai, and Shandong). C: Permutation test result of the OPLS-DA model. D: Model parameter of OPLS-DA. The carrier includes A4 paper, corrugated paper, sponge, soil, and floor leather, and the data are taken as their average values(n=3)
[1] | 吴成招, 王一韬, 胡栋, 等. 近红外光谱技术在食用油掺伪检测中的研究进展[J]. 光谱学与光谱分析, 2023, 43(3): 685-691. |
Wu CZ, Wang YT, Hu D, et al. Research progress of near-infrared spectroscopy in the detection of edible oil adulteration[J]. Spectrosc Spectr Anal, 2023, 43(3): 685-691. | |
[2] |
Tan CH, Kong I, Irfan U, et al. Edible oils adulteration: a review on regulatory compliance and its detection technologies[J]. J Oleo Sci, 2021, 70(10): 1343-1356.
doi: 10.5650/jos.ess21109 pmid: 34497179 |
[3] | 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品中脂肪酸的测定: GB 5009.168—2016[S]. 北京: 中国标准出版社, 2016. |
National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. Determination of Fatty Acids in Foods:GB 5009.168-2016[S]. Beijing: Standards Press of China, 2016. | |
[4] | ASTM International. Standard test method for extraction and derivatization of vegetable oils and fats from fire debris and liquid samples with analysis by gas chromatography-mass spectrometry: E 2881-18[S]. West Conshohocken, PA: ASTM International, 2018. |
[5] |
Sousa Queirós S, von der Lühe B, Silva-Bessa A, et al. Lipidic compounds found in soils surrounding human decomposing bodies and its use in forensic investigations - A narrative review[J]. Sci Justice, 2023, 63(3): 303-312.
doi: 10.1016/j.scijus.2023.02.001 pmid: 37169455 |
[6] | Hussain MN, Basri KN, Arshad S, et al. Analysis of lard in palm oil using long-wave near-infrared(LW-NIR)spectroscopy and gas chromatography-mass spectroscopy(GC-MS)[J]. Food Anal Meth, 2023, 16(2): 349-355. |
[7] | Rebiai A, Hemmami H, Zeghoud S, et al. Current application of chemometrics analysis in authentication of natural products: a review[J]. Comb Chem High Throughput Screen, 2022, 25(6): 945-972. |
[8] | Balbino S, Vincek D, Trtanj I, et al. Assessment of pumpkin seed oil adulteration supported by multivariate analysis: comparison of GC-MS, colourimetry and NIR spectroscopy data[J]. Foods, 2022, 11(6): 835. |
[9] | Üçüncüoğlu D, Küçük VA. A multivariate data approach for FTIR-ATR monitoring of virgin olive oils: Lipid structure during autoxidation[J]. OCL, 2019, 26: 42. |
[10] | 范璐, 吴娜娜, 霍权恭, 等. 模式识别法分析5种植物油脂[J]. 分析化学, 2008, 36(8): 1133-1137. |
Fan L, Wu NN, Huo QG, et al. Pattern recognition analysis of 5 kinds of vegetable oil and fat by the content of fatty acids[J]. Chin J Anal Chem, 2008, 36(8): 1133-1137. | |
[11] | 马路凯, 崔芸, 刘漩, 等. 植物油中不饱和醛作为特征氧化指标的适用性[J]. 中国食品学报, 2022, 22(5): 239-248. |
Ma LK, Cui Y, Liu X, et al. Applicability of unsaturated aldehyde in vegetable oil as characteristic oxidation index[J]. J Chin Inst Food Sci Technol, 2022, 22(5): 239-248. | |
[12] | 刘平阳, 刘占芳, 周红, 等. 基于气相色谱-质谱的脂质组学方法鉴别动植物油脂[J/OL]. 分析试验室, 2024. http://kns.cnki.net/kcms/detail/11.2017.TF.20240521.1042.008.html. |
Liu PY, Liu ZF, Zhou H, et al. Gas chromatography-mass spectrometrybased lipidomics approach for discrimination of vegetable oils and animal fats[J/OL]. Chin J Anal Lab, 2024. http://kns.cnki.net/kcms/detail/11.2017.TF.20240521.1042.008.html. | |
[13] | 时秋娜, 刘占芳, 朱军, 等. 全二维气相色谱-质谱法检测动植物油[J]. 中国油脂, 2017, 42(6): 138-142. |
Shi QN, Liu ZF, Zhu J, et al. Detection of fatty acids in animal fats and vegetable oils by comprehensive two-dimensional gas chromatography coupled with mass spectrometry[J]. China Oils Fats, 2017, 42(6): 138-142. | |
[14] |
Hantao LW, Aleme HG, Pedroso MP, et al. Multivariate curve resolution combined with gas chromatography to enhance analytical separation in complex samples: a review[J]. Anal Chim Acta, 2012, 731: 11-23.
doi: 10.1016/j.aca.2012.04.003 pmid: 22652260 |
[15] |
Xin ZQ, Ren DB, Zhang XJ, et al. Chromatographic fingerprints combined with chemometric methods reveal the chemical features of authentic radix polygalae[J]. J AOAC Int, 2017, 100(1): 30-37.
doi: 10.5740/jaoacint.16-0225 pmid: 27743444 |
[16] | 欧高炎, 朱占星, 董彬, 等. 数据科学导引[M]. 北京: 高等教育出版社, 2017: 29-45. |
Ou GY, Zhu ZX, Dong B, et al. Introduction to data science[M]. Beijing: Higher Education Press, 2017: 29-45. | |
[17] | 时秋娜. 常见动植物油脂及人体脂肪的GC-MS法分析[J]. 环境化学, 2023, 42(10): 3600-3602. |
Shi QN. Analysis of common animal and plant oils and human fat by GC-MS[J]. Environ Chem, 2023, 42(10): 3600-3602. | |
[18] |
Richaud E, Audouin L, Fayolle B, et al. Rate constants of oxidation of unsaturated fatty esters studied by chemiluminescence[J]. Chem Phys Lipids, 2012, 165(7): 753-759.
doi: 10.1016/j.chemphyslip.2012.09.002 pmid: 23026153 |
[19] | Ding C, Wang L, Yao YP, et al. Mechanism of the initial oxidation of monounsaturated fatty acids[J]. Food Chem, 2022, 392: 133298. |
[20] | Jeong DH, Kim SE, Choi WH, et al. A comparative study on the influence of undersampling and oversampling techniques for the classification of physical activities using an imbalanced accelerometer dataset[J]. Healthcare, 2022, 10(7): 1255. |
[21] |
García S, Herrera F. Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy[J]. Evol Comput, 2009, 17(3): 275-306.
doi: 10.1162/evco.2009.17.3.275 pmid: 19708770 |
[22] | Yi XK, Xu YY, Hu Q, et al. ASN-SMOTE: a synthetic minority oversampling method with adaptive qualified synthesizer selection[J]. Complex Intell Syst, 2022, 8(3): 2247-2272. |
[23] | Ning Q, Zhao XW, Ma ZQ. A novel method for identification of glutarylation sites combining borderline-SMOTE with tomek links technique in imbalanced data[J]. IEEE/ACM Trans Comput Biol Bioinform, 2022, 19(5): 2632-2641. |
[24] | Sasada T, Liu ZY, Baba T, et al. A resampling method for imbalanced datasets considering noise and overlap[J]. Procedia Comput Sci, 2020, 176: 420-429. |
[25] | Todeschini R, Ballabio D, Termopoli V, et al. Extended multivariate comparison of 68 cluster validity indices. A review[J]. Chemom Intell Lab Syst, 2024, 251: 105117. |
[26] | Wang FS, Chen JG, Liu FR. Keyframe generation method via improved clustering and silhouette coefficient for video summarization[J]. J Web Eng, 2021, 20(1): 147-170. |
[27] | Robert V, Vasseur Y, Brault V. Comparing high-dimensional partitions with the co-clustering adjusted rand index[J]. J Classif, 2021, 38(1): 158-186. |
[28] | Zielinski AAF, Haminiuk CWI, Nunes CA, et al. Chemical composition, sensory properties, provenance, and bioactivity of fruit juices as assessed by chemometrics: a critical review and guideline[J]. Compr Rev Food Sci Food Saf, 2014, 13(3): 300-316. |
[29] |
Jafarzadegan M, Safi-Esfahani F, Beheshti Z. Combining hierarchical clustering approaches using the PCA method[J]. Expert Syst Appl, 2019, 137: 1-10.
doi: 10.1016/j.eswa.2019.06.064 |
[30] | Chen WH, Xu YH, Yu ZW, et al. Hybrid dimensionality reduction forest with pruning for high-dimensional data classification[J]. IEEE Access, 2020, 8: 40138-40150. |
[31] |
Wang ZY, Han BS, Jing WF, et al. Effects of different steeping temperatures on the leaching of aroma components in black tea by SPME-GC-MS coupled with chemometric method[J]. J AOAC Int, 2019, 102(6): 1834-1844.
doi: 10.5740/jaoacint.18-0405 pmid: 30795823 |
[32] |
He M, Yang ZY, Yang TB, et al. Chemometrics-enhanced one-dimensional/comprehensive two-dimensional gas chromatographic analysis for bioactive terpenoids and phthalides in Chaihu Shugan San essential oils[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2017, 1052: 158-168.
doi: S1570-0232(16)31494-5 pmid: 28390283 |
[33] | Amalia L, Yuliana ND, Sugita P, et al. Volatile compounds, texture, and color characterization of meatballs made from beef, rat, wild boar, and their mixtures[J]. Heliyon, 2022, 8(10): e10882. |
[34] | Deng JK, Zhao HB, Qi B, et al. Volatile characterization of crude and refined walnut oils from aqueous enzymatic extraction by GC-IMS and GC-MS[J]. Arab J Chem, 2024, 17(1): 105404. |
[35] | Worley B, Powers R. PCA as a practical indicator of OPLS-DA model reliability[J]. Curr Metabolomics, 2016, 4(2): 97-103. |
[36] |
Triba MN, Le Moyec L, Amathieu R, et al. PLS/OPLS models in metabolomics: the impact of permutation of dataset rows on the K-fold cross-validation quality parameters[J]. Mol Biosyst, 2015, 11(1): 13-19.
doi: 10.1039/c4mb00414k pmid: 25382277 |
[1] | 王玲玲, 马爱红, 宋前进, 王小龙, 曹晓真, 刘治凤, 陈亚飞, 李继东. 羊痘病毒与羊口疮病毒双重RPA-LFD检测方法的建立与应用[J]. 生物技术通报, 2024, 40(5): 103-111. |
[2] | 孔兰, 叶秀仙, 林榕燕, 林兵, 钟淮钦. 澳洲石斛萜类合成酶基因DkTPS7的克隆与表达分析[J]. 生物技术通报, 2024, 40(12): 160-169. |
[3] | 叶洲辰, 吴友根, 于靖, 张军锋, 杨东梅, 胡新文. 不同产地油茶籽油提取物的抗氧化活性比较分析及其营养评价[J]. 生物技术通报, 2019, 35(10): 80-88. |
[4] | 陈金金, 赵明霞, 姜树, 曹丽丽, 赵庆生, 赵兵, 王晓东. 基于rbcL-a和ITS的枸杞鉴别、遗传关系分析及ITS假基因的发现[J]. 生物技术通报, 2017, 33(5): 123-130. |
[5] | 张明娟, 姚粟, 李辉, 刘洋, 信春晖, 许玲, 程池. 中间型高温放线菌特异PCR 快速鉴别方法的应用[J]. 生物技术通报, 2014, 30(7): 60-63. |
[6] | 马友记, 李海静, 朱化彬, 李发弟. PCR扩增牙釉基因X和Y染色体不同序列鉴定羊早期胚胎性别[J]. 生物技术通报, 2013, 29(9): 110-113. |
[7] | 黄琼林, 马新业, 何瑞, 詹若挺, 陈蔚文. 基于条形码ITS2 序列的青天葵及其混伪品分子鉴别[J]. 生物技术通报, 2012, 0(12): 173-179. |
[8] | 陈伟峰;洪舒音;赵秀玲;. 蛋白编码基因在细菌分类学中的应用[J]. , 2012, 0(05): 42-48. |
[9] | 邓平建;周向阳;杨冬燕;王学林;侯红利;杨永存;吴水清;张海龙;杨小柯;. 转基因作物非预期效应与自然变异的比较和鉴别[J]. , 2011, 0(05): 1-9. |
[10] | 秦春圃. 用新法检测家蚕微孢子虫病[J]. , 2002, 0(06): 49-49. |
[11] | 孙国凤. 用牛胚胎性别鉴定盒可鉴别牛肉的雌雄[J]. , 1999, 0(06): 50-51. |
[12] | 孙国凤. DNA多型猪肉品种鉴别方法的开发[J]. , 1999, 0(06): 51-51. |
[13] | 童光志;. 生物技术在预防兽医学领域的应用及发展趋势[J]. , 1997, 0(06): 1-4. |
[14] | 刘忠松;官春云;孟金陵;危文亮;. 油菜分子标记研究进展[J]. , 1997, 0(05): 14-16. |
[15] | 孙国凤. 牛雄性特异性DNA序列获美国专利并在美国探讨其商业化[J]. , 1996, 0(06): 22-22. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||