生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 160-169.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0403
孔兰1,2(), 叶秀仙1,2, 林榕燕1,2, 林兵1,2, 钟淮钦1,2(
)
收稿日期:
2024-04-26
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
钟淮钦,男,硕士,研究员,研究方向:观赏植物种质资源评价与创新利用;E-mail: zhqeast@163.com作者简介:
孔兰,女,研究方向:观赏植物分子生物学;E-mail: konglan621@126.com
基金资助:
KONG Lan1,2(), YE Xiu-xian1,2, LIN Rong-yan1,2, LIN Bing1,2, ZHONG Huai-qin1,2(
)
Received:
2024-04-26
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】萜类合成酶(terpene synthase, TPS)是参与萜类物质合成的关键酶,在植物花香形成中具有重要作用。探究TPS基因在石斛花香气形成中的作用,为进一步了解不同时期石斛花香气的动态变化及其形成机制提供参考。【方法】采用顶空固相微萃取方法结合气相色谱-质谱联用技术,比较不同时期澳洲石斛花的香气成分差异;利用RT-PCR技术克隆DkTPS7,并进行生物信息学分析;利用农杆菌介导的瞬时转化系统检测其亚细胞定位;利用RT-qPCR技术检测其在不同品种、不同花发育时期和日变化中的表达模式。【结果】澳洲石斛中共检测到523种香气物质,萜类化合物是该品种香气中最丰富的挥发物。DkTPS7的开放阅读框(open reading frame, ORF)为1 797 bp,编码598个氨基酸,含有3个萜类合成酶家族的保守结构域,属于TPS-b亚家族;亚细胞定位分析显示,DkTPS7定位于质体。RT-qPCR结果显示,DkTPS7的表达具有品种特异性,在澳洲石斛中高表达,‘杂交紫花’和麝香品种中几乎不表达;DkTPS7在始花期的澳洲石斛花中的表达量最高,盛花期次之;1 d中,DkTPS7基因表达量变化呈现先升后降的趋势。【结论】从澳洲石斛花中克隆得到DkTPS7基因,其表达具有品种和时空特异性,且其表达模式与单萜类香气物质的积累趋势一致。
孔兰, 叶秀仙, 林榕燕, 林兵, 钟淮钦. 澳洲石斛萜类合成酶基因DkTPS7的克隆与表达分析[J]. 生物技术通报, 2024, 40(12): 160-169.
KONG Lan, YE Xiu-xian, LIN Rong-yan, LIN Bing, ZHONG Huai-qin. Cloning and Expression Analysis of DkTPS7 in Dendrobium kingianum[J]. Biotechnology Bulletin, 2024, 40(12): 160-169.
图1 澳洲石斛花香气物质鉴定 A:花香气物质分类与比例;B:主成分分析;C:差异代谢物的韦恩图;D:K-mean分析
Fig. 1 Identification of fragrance compounds in Dendrobium kingianum A: Classification and proportion of fragrance compounds detected in flowers. B: Principal component analysis(PCA). C: Venn diagram of differential volatile compounds. D: K-mean analysis
分组 Groups | 编号 Code | 化合物 Compound | 分类 Class | 差异倍数 Log2(fold change) |
---|---|---|---|---|
AZSH-B vs AZSH-F | D112 | 苯乙酸甲酯 | 酯 Ester | 15.48 |
XMW0856 | 2-羟基-1-苯基-1-丁酮 | 酮 Ketone | 8.43 | |
D341 | ε-衣兰油烯 | 萜类 Terpenoids | 8.42 | |
D178 | (1R,3aR,5aR,9aS)-1,4,4,7-四甲基-1,2,3,3a,4,5a,8,9-八氢环戊五[c]苯并呋喃 | 萜类 Terpenoids | 7.57 | |
KMW0548 | α-古芸烯 | 萜类 Terpenoids | 6.46 | |
KMW0148 | α-蒎烯 | 萜类 Terpenoids | 6.30 | |
XMW0992 | 诺卡烯 | 萜类 Terpenoids | 5.67 | |
XMW0144 | (+)-樟脑 | 萜类 Terpenoids | 5.51 | |
XMW1351 | (3aS,8aS)-6,8a-二甲基-3-丙-2-亚基-1,2,3a,4,5,8-六氢甘菊烯 | 萜类 Terpenoids | 5.34 | |
KMW0210 | β-荜澄茄烯 | 萜类 Terpenoids | 3.98 | |
AZSH-B vs AZSH-H | D112 | 苯乙酸甲酯 | 酯 Ester | 10.73 |
XMW0856 | 2-羟基-1-苯基-1-丁酮 | 酮 Ketone | 7.05 | |
D178 | (1R,3aR,5aR,9aS)-1,4,4,7-四甲基-1,2,3,3a,4,5a,8,9-八氢环戊五[c]苯并呋喃 | 萜类 Terpenoids | 5.60 | |
KMW0548 | α-古芸烯 | 萜类 Terpenoids | 4.95 | |
KMW0148 | α-蒎烯 | 萜类 Terpenoids | 4.71 | |
XMW0606 | 2-丁基-2-乙基-1,3-二氧戊环 | 杂环化合物Heterocyclic compound | 3.24 | |
D305 | 2-甲基丁酸3-甲基丁酯 | 酯 Ester | 3.01 | |
KMW0340 | 1-甲基庚基乙酸酯 | 酯 Este | 3.00 | |
D313 | (Z)-1-(1-乙氧基乙氧基)-3-己烯 | 醛 Aldehyd | 2.96 | |
NMW0036 | 1-乙烯基-2-吡咯烷酮 | 酮 Ketone | 2.96 | |
AZSH-H vs AZSH-F | D341 | ε-衣兰油烯 | 萜类 Terpenoids | 8.42 |
KMW0578 | 3-甲基丁酸芳樟酯 | 酯 Ester | 7.75 | |
XMW0992 | 诺卡烯 | 萜类 Terpenoids | 5.67 | |
D112 | 苯乙酸甲酯 | 酯 Ester | 4.75 | |
XMW0144 | (+)-樟脑 | 萜类 Terpenoids | 3.47 | |
KMW0408 | 对伞花醇 | 萜类 Terpenoids | 3.11 | |
XMW1351 | (3aS,8aS)-6,8a-二甲基-3-丙-2-亚基-1,2,3a,4,5,8-六氢甘菊烯 | 萜类 Terpenoids | 2.98 | |
D186 | (E)-香芹醇 | 萜类 Terpenoids | 2.39 | |
D401 | 可可醛 2 | 醛 Aldehyde | 2.09 | |
XMW0149 | 4,5-二氢-5,5-二甲基-1H-吡唑 | 杂环化合物Heterocyclic compound | 1.98 |
表1 各分组比较中差异倍数前10代谢物
Table 1 Top 10 metabolites in difference folds in each comparison of each group
分组 Groups | 编号 Code | 化合物 Compound | 分类 Class | 差异倍数 Log2(fold change) |
---|---|---|---|---|
AZSH-B vs AZSH-F | D112 | 苯乙酸甲酯 | 酯 Ester | 15.48 |
XMW0856 | 2-羟基-1-苯基-1-丁酮 | 酮 Ketone | 8.43 | |
D341 | ε-衣兰油烯 | 萜类 Terpenoids | 8.42 | |
D178 | (1R,3aR,5aR,9aS)-1,4,4,7-四甲基-1,2,3,3a,4,5a,8,9-八氢环戊五[c]苯并呋喃 | 萜类 Terpenoids | 7.57 | |
KMW0548 | α-古芸烯 | 萜类 Terpenoids | 6.46 | |
KMW0148 | α-蒎烯 | 萜类 Terpenoids | 6.30 | |
XMW0992 | 诺卡烯 | 萜类 Terpenoids | 5.67 | |
XMW0144 | (+)-樟脑 | 萜类 Terpenoids | 5.51 | |
XMW1351 | (3aS,8aS)-6,8a-二甲基-3-丙-2-亚基-1,2,3a,4,5,8-六氢甘菊烯 | 萜类 Terpenoids | 5.34 | |
KMW0210 | β-荜澄茄烯 | 萜类 Terpenoids | 3.98 | |
AZSH-B vs AZSH-H | D112 | 苯乙酸甲酯 | 酯 Ester | 10.73 |
XMW0856 | 2-羟基-1-苯基-1-丁酮 | 酮 Ketone | 7.05 | |
D178 | (1R,3aR,5aR,9aS)-1,4,4,7-四甲基-1,2,3,3a,4,5a,8,9-八氢环戊五[c]苯并呋喃 | 萜类 Terpenoids | 5.60 | |
KMW0548 | α-古芸烯 | 萜类 Terpenoids | 4.95 | |
KMW0148 | α-蒎烯 | 萜类 Terpenoids | 4.71 | |
XMW0606 | 2-丁基-2-乙基-1,3-二氧戊环 | 杂环化合物Heterocyclic compound | 3.24 | |
D305 | 2-甲基丁酸3-甲基丁酯 | 酯 Ester | 3.01 | |
KMW0340 | 1-甲基庚基乙酸酯 | 酯 Este | 3.00 | |
D313 | (Z)-1-(1-乙氧基乙氧基)-3-己烯 | 醛 Aldehyd | 2.96 | |
NMW0036 | 1-乙烯基-2-吡咯烷酮 | 酮 Ketone | 2.96 | |
AZSH-H vs AZSH-F | D341 | ε-衣兰油烯 | 萜类 Terpenoids | 8.42 |
KMW0578 | 3-甲基丁酸芳樟酯 | 酯 Ester | 7.75 | |
XMW0992 | 诺卡烯 | 萜类 Terpenoids | 5.67 | |
D112 | 苯乙酸甲酯 | 酯 Ester | 4.75 | |
XMW0144 | (+)-樟脑 | 萜类 Terpenoids | 3.47 | |
KMW0408 | 对伞花醇 | 萜类 Terpenoids | 3.11 | |
XMW1351 | (3aS,8aS)-6,8a-二甲基-3-丙-2-亚基-1,2,3a,4,5,8-六氢甘菊烯 | 萜类 Terpenoids | 2.98 | |
D186 | (E)-香芹醇 | 萜类 Terpenoids | 2.39 | |
D401 | 可可醛 2 | 醛 Aldehyde | 2.09 | |
XMW0149 | 4,5-二氢-5,5-二甲基-1H-吡唑 | 杂环化合物Heterocyclic compound | 1.98 |
图2 DkTPS7蛋白生物信息学分析 A:DkTPS7蛋白的保守结构域;B:DkTPS7的亲疏水性;C:DkTPS7的二级结构(蓝色:α-螺旋,绿色:β-折角,紫色:无规则卷曲,红色:延伸链);D:DkTPS7的三级结构
Fig. 2 Bioinformatics analysis of DkTPS7 A: Conserved domain of DkTPS7. B: Hydrophilic and hydrophobic feature of DkTPS7. C: Secondary structure of DkTPS7(Blue: α-helix, green: β-turn, purple: random coil, red: extended strand). D: Three-dimensional structure of DkTPS7
图3 DkTPS7与其他TPS同源蛋白的多序列比对分析 红色方框标注为保守基序
Fig. 3 Multi-sequence alignment of DkTPS7 with other homologous protein TPS The red boxes indicate the conserved motif
图6 DkTPS7在不同品种(A)、不同花期(B)和不同时间点(C)中的表达模式 不同小写字母表示差异显著(P< 0.05)
Fig. 6 Expression profiles of DkTPS7 at different cultivars(A), different flowering stages(B)and different times during the blooming stage(C) Different lowercase letters indicate significant differences(P< 0.05)
图7 DkTPS7与差异代谢物的相关性 NMW0036:1-乙烯基-2-吡咯烷酮;KMW0148:α-蒎烯;XMW0606:丁基-2-乙基-1,3-二氧戊环;XMW0856:2-羟基-1-苯基-1-丁酮;KMW0340:1-甲基庚基乙酸酯;D178:(1R,3aR,5aR,9aS)-1,4,4,7-四甲基-1,2,3,3a,4,5a,8,9-八氢环戊五[c]苯并呋喃;D313:(Z)-1-(1-乙氧基乙氧基)己-3-烯;KMW0548:α-古芸烯
Fig. 7 Correlation network between DkTPS7 and differential metabolites NMW0036: 1-ethenyl-2-pyrrolidinone; KMW0148: alpha-pinene; XMW0606: 1,3-dioxolane, 2-butyl-2-ethyl; XMW0856: 1-butanone, 2-hydroxy-1-phenyl; KMW0340: 2-octanol, acetate; D178: italicene ether; D313: 3-hexene, 1-(1-ethoxyethoxy)-(Z); KMW0548: α-gurjunene
[1] | Wang HL, Wang XY, Yan AL, et al. Metabolomic and transcriptomic integrated analysis revealed the decrease of monoterpenes accumulation in table grapes during long time low temperature storage[J]. Food Res Int, 2023, 174(Pt 1): 113601. |
[2] | Ramya M, Jang S, An HR, et al. Volatile organic compounds from orchids: from synthesis and function to gene regulation[J]. Int J Mol Sci, 2020, 21(3): 1160. |
[3] | Wang QQ, Zhu MJ, Yu X, et al. Genome-wide identification and expression analysis of terpene synthase genes in Cymbidium faberi[J]. Front Plant Sci, 2021, 12: 751853. |
[4] | Yang ZY, Zhu YY, Zhang X, et al. Volatile secondary metabolome and transcriptome analysis reveals distinct regulation mechanism of aroma biosynthesis in Syringa oblata and S. vulgaris[J]. Plant Physiol Biochem, 2023, 196: 965-973. |
[5] | Zhao YX, Liu YG, Chen YC, et al. Overexpression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase enhances the monoterpene content in Litsea cubeba[J]. Forestry Research, 2023, 3: 11. |
[6] | 陈笛, 陈雪津, 郭永春, 等. 茉莉花芳樟醇生物合成关键基因的克隆与表达分析[J]. 西北植物学报, 2019, 39(8): 1344-1352. |
Chen D, Chen XJ, Guo YC, et al. Cloning and expression analysis of JsNEL/LINS from Jasminum sambac[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(8): 1344-1352. | |
[7] |
Vranová E, Coman D, Gruissem W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis[J]. Annu Rev Plant Biol, 2013, 64: 665-700.
doi: 10.1146/annurev-arplant-050312-120116 pmid: 23451776 |
[8] | Muhlemann JK, Klempien A, Dudareva N. Floral volatiles: from biosynthesis to function[J]. Plant Cell Environ, 2014, 37(8): 1936-1949. |
[9] |
钟淮钦, 孔兰, 樊荣辉, 等. 红梦香文心兰萜类合成酶基因OnTPS的克隆与表达分析[J]. 核农学报, 2022, 36(2): 313-321.
doi: 10.11869/j.issn.100-8551.2022.02.0313 |
Zhong HQ, Kong L, Fan RH, et al. Cloning and expression analysis of terpene synthase gene OnTPS from Oncidium twinkle red fantasy[J]. J Nucl Agric Sci, 2022, 36(2): 313-321. | |
[10] | Gao FZ, Liu BF, Li M, et al. Identification and characterization of terpene synthase genes accounting for volatile terpene emissions in flowers of Freesia × hybrida[J]. J Exp Bot, 2018, 69(18): 4249-4265. |
[11] | Wang Y, Yang QS, Zhu YF, et al. MrTPS3 and MrTPS20 are responsible for β-caryophyllene and α-pinene production, respectively, in red bayberry(Morella rubra)[J]. Front Plant Sci, 2022, 12: 798086. |
[12] |
Köllner TG, Schnee C, Gershenzon J, et al. The variability of sesquiterpenes emitted from two Zea mays cultivars is controlled by allelic variation of two terpene synthase genes encoding stereoselective multiple product enzymes[J]. Plant Cell, 2004, 16(5): 1115-1131.
doi: 10.1105/tpc.019877 pmid: 15075399 |
[13] |
Bao TT, Kimani S, Li YQ, et al. Allelic variation of terpene synthases drives terpene diversity in the wild species of the Freesia genus[J]. Plant Physiol, 2023, 192(3): 2419-2435.
doi: 10.1093/plphys/kiad172 pmid: 36932696 |
[14] |
Lewinsohn E, Schalechet F, Wilkinson J, et al. Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits[J]. Plant Physiol, 2001, 127(3): 1256-1265.
pmid: 11706204 |
[15] | Wu LP, Fan JZ, Su XL, et al. Genome-wide identification of R2R3-MYB family genes and their response to stress in Dendrobium nobile[J]. Front Biosci(Landmark Ed), 2024, 29(1): 1. |
[16] | 张钰莹, 赵瑞晶, 许凤, 等. 4种香花型石斛花朵的挥发性成分分析[J]. 热带亚热带植物学报, 2024, 32(2): 264-272. |
Zhang YY, Zhao RJ, Xu F, et al. Analysis of volatile components of four aromatic Dendrobium flowers[J]. J Trop Subtrop Bot, 2024, 32(2): 264-272. | |
[17] | Yu ZM, Zhang GH, Teixeira da Silva JA, et al. The methyl jasmonate-responsive transcription factor DobHLH4 promotes DoTPS10, which is involved in linalool biosynthesis in Dendrobium officinale during floral development[J]. Plant Sci, 2021, 309: 110952. |
[18] | 王元成, 张萌, 周晓星, 等. 基于GC-MS的五种石斛花朵挥发性成分鉴定与差异性分析[J]. 林业科学研究, 2022, 35(1): 132-140. |
Wang YC, Zhang M, Zhou XX, et al. Floral volatile components from five Dendrobium species based on SPME-GC-MS[J]. For Res, 2022, 35(1): 132-140. | |
[19] | 仇硕, 郑文俊, 夏科, 等. 细茎石斛花朵挥发性成分分析[J]. 广西植物, 2019, 39(11): 1482-1495. |
Qiu S, Zheng WJ, Xia K, et al. Volatile components in flowers of Dendrobium moniliforme[J]. Guihaia, 2019, 39(11): 1482-1495. | |
[20] | 袁明焱, 王雅琴, 李一泽, 等. 基于SPME-GC-MS法分析美花石斛花的香气组成[J]. 香料香精化妆品, 2018(4): 23-25, 69. |
Yuan MY, Wang YQ, Li YZ, et al. Analysis of aroma components in Dendrobium loddigesii Rolfe flower by SPME-GC-MS[J]. Flavour Fragr Cosmet, 2018(4): 23-25, 69. | |
[21] | 夏瑞萍, 李芬, 金娜, 等. 不同品种石斛花茶窨制工艺品质初探[J]. 中国茶叶加工, 2023(2): 46-51. |
Xia RP, Li F, Jin N, et al. Preliminary study on the quality of different varieties of Dendrobium flower tea in the scenting process[J]. China Tea Process, 2023(2): 46-51. | |
[22] | Zhao CH, Yu ZM, Silva JATD, et al. Functional characterization of a Dendrobium officinale geraniol synthase DoGES1 involved in floral scent formation[J]. Int J Mol Sci, 2020, 21(19): 7005. |
[23] | Du ZH, Jin YX, Wang WZ, et al. Molecular and metabolic insights into floral scent biosynthesis during flowering in Dendrobium chrysotoxum[J]. Front Plant Sci, 2022, 13: 1030492. |
[24] | Li NH, Dong YX, Lv M, et al. Combined analysis of volatile terpenoid metabolism and transcriptome reveals transcription factors related to terpene synthase in two cultivars of Dendrobium officinale flowers[J]. Front Genet, 2021, 12: 661296. |
[25] | 李崇晖, 黄明忠, 黄少华, 等. 4种石斛属植物花朵挥发性成分分析[J]. 热带亚热带植物学报, 2015, 23(4): 454-462. |
Li CH, Huang MZ, Huang SH, et al. Volatile components in flowers of four Dendrobium species[J]. J Trop Subtrop Bot, 2015, 23(4): 454-462. | |
[26] | Yu ZM, Zhao CH, Zhang GH, et al. Genome-wide identification and expression profile of TPS gene family in Dendrobium officinale and the role of DoTPS10 in linalool biosynthesis[J]. Int J Mol Sci, 2020, 21(15): 5419. |
[27] |
Dudareva N, Klempien A, Muhlemann JK, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds[J]. New Phytol, 2013, 198(1): 16-32.
doi: 10.1111/nph.12145 pmid: 23383981 |
[28] | 黄昕蕾, 郑宝强, 王雁. 鼓槌石斛不同花期香气成分及盛花期香气日变化规律研究[J]. 林业科学研究, 2018, 31(4): 142-149. |
Huang XL, Zheng BQ, Wang Y. Study of aroma compounds in flowers of Dendrobium chrysotoxum in different florescence stages and diurnal variation of full blooming stage[J]. For Res, 2018, 31(4): 142-149. |
[1] | 李禹欣, 李苗, 杜晓芬, 韩康妮, 连世超, 王军. 谷子SiSAP基因家族的鉴定与表达分析[J]. 生物技术通报, 2025, 41(1): 143-156. |
[2] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
[3] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
[4] | 吴慧琴, 王延宏, 刘涵, 司政, 刘雪晴, 王静, 阳宜, 成妍. 辣椒UGT基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 198-211. |
[5] | 满全财, 孟姿诺, 李伟, 蔡心汝, 苏润东, 付长青, 高顺娟, 崔江慧. 马铃薯AQP基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 51-63. |
[6] | 乔岩, 杨芳, 任盼荣, 祁伟亮, 安沛沛, 李茜, 李丹, 肖俊飞. 马铃薯野生种烯酰水合酶超家族基因ScDHNS的克隆与功能分析[J]. 生物技术通报, 2024, 40(9): 92-103. |
[7] | 申鹏, 高雅彬, 丁红. 马铃薯SAT基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(9): 64-73. |
[8] | 邢丽南, 张艳芳, 葛明然, 赵令敏, 陈妍, 霍秀文. 山药DoWRKY40基因表达特征分析及互作蛋白筛选[J]. 生物技术通报, 2024, 40(8): 118-128. |
[9] | 李亦君, 杨小贝, 夏琳, 罗朝鹏, 徐馨, 杨军, 宁黔冀, 武明珠. 烟草NtPRR37基因克隆及功能分析[J]. 生物技术通报, 2024, 40(8): 221-231. |
[10] | 崔原瑗, 王昭懿, 白双宇, 任毓昭, 豆飞飞, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 大麦非特异性磷脂酶C基因家族全基因组鉴定及苗期胁迫表达分析[J]. 生物技术通报, 2024, 40(8): 74-82. |
[11] | 杨巍, 赵丽芬, 唐兵, 周麟笔, 杨娟, 莫传园, 张宝会, 李飞, 阮松林, 邓英. 芥菜SRO基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2024, 40(8): 129-141. |
[12] | 余纽, 柳帆, 杨锦昌. 油楠SgTPS7的克隆及其在萜类生物合成和非生物胁迫中的功能[J]. 生物技术通报, 2024, 40(8): 164-173. |
[13] | 周冉, 王兴平, 李彦霞, 罗仍卓么. 金黄色葡萄球菌型乳房炎奶牛乳腺组织的lncRNA差异表达分析[J]. 生物技术通报, 2024, 40(8): 320-328. |
[14] | 林彤, 袁程, 董陈文华, 曾孟琼, 杨燕, 毛自朝, 林春. 藜麦配子发育相关基因CqSTK的筛选及功能分析[J]. 生物技术通报, 2024, 40(8): 83-94. |
[15] | 李雨晴, 吴楠, 罗建让. 卵叶牡丹花色苷合成相关基因bHLH的克隆与功能分析[J]. 生物技术通报, 2024, 40(8): 174-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||