生物技术通报 ›› 2024, Vol. 40 ›› Issue (10): 181-190.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0613
皮一飞1,2(), 宋新辉3, 王淅琳1,2, 李谨谨1, 孙长斌1, 徐炜1()
收稿日期:
2024-07-01
出版日期:
2024-10-26
发布日期:
2024-11-20
通讯作者:
徐炜,男,研究员,研究方向:多组学技术开发;E-mail: xuwei01@caas.cn作者简介:
皮一飞,男,硕士研究生,研究方向:靶向技术开发;E-mail: piyifei0822@163.com宋新辉为本文共同第一作者
基金资助:
PI Yi-fei1,2(), SONG Xin-hui3, WANG Xi-lin1,2, LI Jin-jin1, SUN Chang-bin1, XU Wei1()
Received:
2024-07-01
Published:
2024-10-26
Online:
2024-11-20
摘要:
【目的】开发哺乳动物细胞R-loop靶向编辑技术,探究其在肿瘤细胞耐药性研究中的应用。【方法】构建无酶切活性的Cas9与具有R-loop水解活性的RNase H1融合蛋白dCas9-RNaseH1表达载体,用于实现对R-loop的靶向编辑。在HeLa细胞中稳定表达该融合蛋白,建立R-loop靶向编辑细胞模型。转染覆盖全基因组转录起始区域的sgRNA文库,构建R-loop筛选细胞库,筛选影响紫杉醇和顺铂耐药性的R-loop功能位点。【结果】筛选获得744个影响HeLa细胞耐药性的R-loop功能位点,覆盖了细胞周期、凋亡、信号传导等关键生物通路。其中,26个位点使HeLa细胞对这两种药物产生耐药性,8个位点使其对这两种药物敏感,提示可能存在共享的生物通路。功能验证显示,部分R-loop功能位点通过调节相关基因(如ZBTB20、SPON2、ACTRT1等)的表达来影响HeLa细胞对抗肿瘤药物的敏感性。【结论】成功开发出适用于哺乳动物细胞的R-loop靶向编辑系统,并建立高通量筛选平台。
皮一飞, 宋新辉, 王淅琳, 李谨谨, 孙长斌, 徐炜. 基于R-loop靶向编辑技术的R-loop功能位点高通量筛选系统[J]. 生物技术通报, 2024, 40(10): 181-190.
PI Yi-fei, SONG Xin-hui, WANG Xi-lin, LI Jin-jin, SUN Chang-bin, XU Wei. High-throughput Screening System for Functional R-loop Loci Based on R-loop Targeted Editing Technology[J]. Biotechnology Bulletin, 2024, 40(10): 181-190.
图1 R-loop靶向编辑及高通量筛选系统示意图 A:基于CRISPR/dCas9与RNase H1酶的靶向编辑R-loop技术示意图;B:基于sgRNA慢病毒文库构建的R-loop高通量筛选系统流程示意图
Fig. 1 Schematic diagram of R-loop targeted editing and high-throughput screening system A: Schematic diagram of targeted R-loop editing technology based on CRISPR/dCas9 and RNase H1 enzyme. B: Workflow schematic of high-throughput screening system for R-loops based on sgRNA lentiviral library construction
用途 Purpose | 名称 Name | 序列 Sequence(5'-3') |
---|---|---|
构建慢病毒载体 Constructing lentiviral vector | BamH1-T2A-XbaI | CGGGATCCGAGGGAAGAGGTTCCCTGCTCACATGCGG AGACGTAGAAGAGAATCCCGGACCCTCTAGAGC |
RNaseH1-T2A-F | CGGGATCCTTCTATGCCGTGAGGAGGGGC | |
RNaseH1-T2A-R | CGGGATCCTTCTATGCCGTGAGGAGGGGCGCTCTAGAGGTCATGGGTCCGGGATTCTCTTCTACGTCTCCGCATGTGAGCAGGGAACCTCTTCCCTCCCCTGAACCTGTACAGTTAATGTCTTCCGATTGTTTAGCTCCTTCTCTGGCT | |
dCas9 基因验证 Validating the dCas9 gene | dCas9-F | GAAGCAGCTTCGAGAAGAATCCCATCGAC |
dCas9-R | GTCGATGGTGGTGTCAAAGTACTTGAAGGCG | |
验证编辑效率 Editing efficiency validation | RPL13A-1-sgR | GCGTGCGCAGAGATTCCCCA |
RPL13A-2-sgR | CGCGTGCGCAGAGATTCCCC | |
RPL13A-3-sgR | GCTTCGACCAATGAAAACAC | |
CALM3-1-sgR | CCGTGGGAGCCGCAGTGCGG | |
CALM3-1-sgR | GATCCGTGGGAGCCGCAGTG | |
CALM3-1-sgR | CGGGGCGCGGAGGGATCCG | |
TFPT-1-sgR | GAGGAGAGGTGAGTGTGATG | |
TFPT-2-sgR | GAGAGGAGAGGTGAGTGTGA | |
TFPT-3-sgR | GCGACTAACGCTAGAAACAG | |
编辑效率验证DRIP-qPCR DRIP-qPCR for editing efficiency validation | RPL13A-F | AGGTGCCTTGCTCACAGAGT |
RPL13A-R | GGTTGCATTGCCCTCATTAC | |
CALM3-F | GAGGAATTGTGGCGTTGACT | |
CALM3-R | AGAGTGGCCAAATGAGCAGT | |
TFPT-F | TCTGGGAGTCCAAGCAGACT | |
TFPT-R | AAGGAGCCACTGAAGGGTTT | |
RPL13A-F | AGGTGCCTTGCTCACAGAGT | |
RPL13A-R | GGTTGCATTGCCCTCATTAC | |
EGR1neg-F | GAACGTTCAGCCTCGTTCTC | |
EGR1neg-R | GGAAGGTGGAAGGAAACACA | |
SNRPNneg-F | GCCAAATGAGTGAGGATGG | |
SNRPNneg-R | TCCTCTCTGCCTGACTCCAT |
表1 R-loop靶向调控技术构建所用引物序列
Table 1 Primer sequences used for constructing R-loop targeting regulatory technology
用途 Purpose | 名称 Name | 序列 Sequence(5'-3') |
---|---|---|
构建慢病毒载体 Constructing lentiviral vector | BamH1-T2A-XbaI | CGGGATCCGAGGGAAGAGGTTCCCTGCTCACATGCGG AGACGTAGAAGAGAATCCCGGACCCTCTAGAGC |
RNaseH1-T2A-F | CGGGATCCTTCTATGCCGTGAGGAGGGGC | |
RNaseH1-T2A-R | CGGGATCCTTCTATGCCGTGAGGAGGGGCGCTCTAGAGGTCATGGGTCCGGGATTCTCTTCTACGTCTCCGCATGTGAGCAGGGAACCTCTTCCCTCCCCTGAACCTGTACAGTTAATGTCTTCCGATTGTTTAGCTCCTTCTCTGGCT | |
dCas9 基因验证 Validating the dCas9 gene | dCas9-F | GAAGCAGCTTCGAGAAGAATCCCATCGAC |
dCas9-R | GTCGATGGTGGTGTCAAAGTACTTGAAGGCG | |
验证编辑效率 Editing efficiency validation | RPL13A-1-sgR | GCGTGCGCAGAGATTCCCCA |
RPL13A-2-sgR | CGCGTGCGCAGAGATTCCCC | |
RPL13A-3-sgR | GCTTCGACCAATGAAAACAC | |
CALM3-1-sgR | CCGTGGGAGCCGCAGTGCGG | |
CALM3-1-sgR | GATCCGTGGGAGCCGCAGTG | |
CALM3-1-sgR | CGGGGCGCGGAGGGATCCG | |
TFPT-1-sgR | GAGGAGAGGTGAGTGTGATG | |
TFPT-2-sgR | GAGAGGAGAGGTGAGTGTGA | |
TFPT-3-sgR | GCGACTAACGCTAGAAACAG | |
编辑效率验证DRIP-qPCR DRIP-qPCR for editing efficiency validation | RPL13A-F | AGGTGCCTTGCTCACAGAGT |
RPL13A-R | GGTTGCATTGCCCTCATTAC | |
CALM3-F | GAGGAATTGTGGCGTTGACT | |
CALM3-R | AGAGTGGCCAAATGAGCAGT | |
TFPT-F | TCTGGGAGTCCAAGCAGACT | |
TFPT-R | AAGGAGCCACTGAAGGGTTT | |
RPL13A-F | AGGTGCCTTGCTCACAGAGT | |
RPL13A-R | GGTTGCATTGCCCTCATTAC | |
EGR1neg-F | GAACGTTCAGCCTCGTTCTC | |
EGR1neg-R | GGAAGGTGGAAGGAAACACA | |
SNRPNneg-F | GCCAAATGAGTGAGGATGG | |
SNRPNneg-R | TCCTCTCTGCCTGACTCCAT |
用途 Purpose | 名称 Name | 序列 Sequence(5'-3') |
---|---|---|
sgRNA文库PCR sgRNA library PCR | Lib-plasmid-F | TCGTCGGCAGCGTCTGTGGAAAGGACGAAACACC |
Lib-plasmid-R | GTCTCGTGGGCTCGGTGGCCAAGTTGATAACGGACTA | |
建库 | N5XX | AATGATACGGCGACCACCGAGATCTACAC[IIIIIIII]TCGTCGGCAGCGTC |
Library preparation | N7XX | CAAGCAGAAGACGGCATACGAGAT[IIIIIIII]GTCTCGTGGGCTCGG |
表2 sgRNA文库构建引物
Table 2 sgRNA library construction primer sequences
用途 Purpose | 名称 Name | 序列 Sequence(5'-3') |
---|---|---|
sgRNA文库PCR sgRNA library PCR | Lib-plasmid-F | TCGTCGGCAGCGTCTGTGGAAAGGACGAAACACC |
Lib-plasmid-R | GTCTCGTGGGCTCGGTGGCCAAGTTGATAACGGACTA | |
建库 | N5XX | AATGATACGGCGACCACCGAGATCTACAC[IIIIIIII]TCGTCGGCAGCGTC |
Library preparation | N7XX | CAAGCAGAAGACGGCATACGAGAT[IIIIIIII]GTCTCGTGGGCTCGG |
用途 Purpose | 名称 Name | 序列 Sequence(5'-3') |
---|---|---|
合成R-loop功能位点sgRNA序列 Synthesize sgRNA sequences targeting R-loop functional sites | ZBTB20 | AGGAGCAAAATGAAGCAGAA |
TUBAL3 | TGGTCTCAGAGTAGCTGTGT | |
TMEM176A | CCCAGTGACCCTCGCGCAGC | |
TAF6 | AGGGAGGTTCTGGTGGAGCT | |
SPON2 | CTGCGTGGGGTGGTGATGAA | |
SOX14 | TCTGCTGCTGATTGGCGCCC | |
ACTRT1 | ATTGGCTCAGAGGCCCCACC | |
CARHSP1 | GAACGCAGAGCGCGGGACGT | |
CAMKK2 | AGCCGGCGGGGGCGCGCAGG | |
C4orf33 | GAATCACCCTTCCTTCTTCT | |
ZYG11A | AACAGAGAGGACCGTTAGAG | |
ZFY | AGTTCGGAGCTGACAAAAAG | |
CCDC71 | GTTCTTCAGACTTCTGCACA | |
CCDC30 | TTTGAGACTTTGCTGTTGTT | |
ZNF84 | GTGCAGTCCCCGACTCGTCC | |
TPP2 | GAGGAGTCTGAGGACATTAC | |
TXNRD1 | TAGCCCGTGTATCTTCTTCA | |
C9orf169 | CTCAGGTGATCCGCCTGCCT | |
CCM2 | GGGAAGTAGGGAAAATGAGC | |
C2orf74 | CTAATTTCTCTCCATAACTG | |
CCL22 | GTGGAGAAATTCTCTTTGGC | |
CA10 | TGAGGCTGAGCGCGGCCATG | |
CASP7 | GTGCGTATGCTGTGGGGTTG | |
CASC5 | ATTGTGGGGGAGGTCTCCAC | |
qPCR验证 qPCR validation | ZBTB20-F- | GCGTGGACAGGATCTACTCG |
ZBTB20-R- | ATCGTCCTCCATCTCCTGCT | |
SPON2-F | GCCAGAGCCCTGGCCAAATACAGCATC | |
SPON2-R | TCCTCCACATGCTGTAGTCGGAGCTATG | |
TPP2-F | TTCACACCCAGGCTCAAGAC | |
TPP2-R | TGCAAATTTAAGGCCTCTCCC | |
ZNF84-F | ATCTCCTACCCACGGCTCTT | |
ZNF84-R | AAGGAGAAGAGCCGTGGGTA | |
C4orf33-F | GTTGAACTTTGTCCCCACGGACAGC | |
C4orf33-R | GAGATAAGCTTTGCCTTCCCATTTTGTCTCTC | |
ACTRT1-F | TGTCATCAGCTCCGTCTTGG | |
ACTRT1-R | TACCAGTCCACGCTCAATGG | |
ZYF-F | TGTTCCTGATGACCCAGACTC | |
ZYF-R | ATCTGGGACTGTGCAGTGTG | |
C4orf74-F | GTTGAACTTTGTCCCCACGGACAGC | |
C4orf74-R | GAGATAAGCTTTGCCTTCCCATTTTGTCTCTC | |
CCL22-F | ACAGACTGCACTCCTGGTTG | |
CCL22-R | GACGTAATCACGGCAGCAGA |
表3 功能位点验证所用引物
Table 3 Primer sequences used for validation of functional sites
用途 Purpose | 名称 Name | 序列 Sequence(5'-3') |
---|---|---|
合成R-loop功能位点sgRNA序列 Synthesize sgRNA sequences targeting R-loop functional sites | ZBTB20 | AGGAGCAAAATGAAGCAGAA |
TUBAL3 | TGGTCTCAGAGTAGCTGTGT | |
TMEM176A | CCCAGTGACCCTCGCGCAGC | |
TAF6 | AGGGAGGTTCTGGTGGAGCT | |
SPON2 | CTGCGTGGGGTGGTGATGAA | |
SOX14 | TCTGCTGCTGATTGGCGCCC | |
ACTRT1 | ATTGGCTCAGAGGCCCCACC | |
CARHSP1 | GAACGCAGAGCGCGGGACGT | |
CAMKK2 | AGCCGGCGGGGGCGCGCAGG | |
C4orf33 | GAATCACCCTTCCTTCTTCT | |
ZYG11A | AACAGAGAGGACCGTTAGAG | |
ZFY | AGTTCGGAGCTGACAAAAAG | |
CCDC71 | GTTCTTCAGACTTCTGCACA | |
CCDC30 | TTTGAGACTTTGCTGTTGTT | |
ZNF84 | GTGCAGTCCCCGACTCGTCC | |
TPP2 | GAGGAGTCTGAGGACATTAC | |
TXNRD1 | TAGCCCGTGTATCTTCTTCA | |
C9orf169 | CTCAGGTGATCCGCCTGCCT | |
CCM2 | GGGAAGTAGGGAAAATGAGC | |
C2orf74 | CTAATTTCTCTCCATAACTG | |
CCL22 | GTGGAGAAATTCTCTTTGGC | |
CA10 | TGAGGCTGAGCGCGGCCATG | |
CASP7 | GTGCGTATGCTGTGGGGTTG | |
CASC5 | ATTGTGGGGGAGGTCTCCAC | |
qPCR验证 qPCR validation | ZBTB20-F- | GCGTGGACAGGATCTACTCG |
ZBTB20-R- | ATCGTCCTCCATCTCCTGCT | |
SPON2-F | GCCAGAGCCCTGGCCAAATACAGCATC | |
SPON2-R | TCCTCCACATGCTGTAGTCGGAGCTATG | |
TPP2-F | TTCACACCCAGGCTCAAGAC | |
TPP2-R | TGCAAATTTAAGGCCTCTCCC | |
ZNF84-F | ATCTCCTACCCACGGCTCTT | |
ZNF84-R | AAGGAGAAGAGCCGTGGGTA | |
C4orf33-F | GTTGAACTTTGTCCCCACGGACAGC | |
C4orf33-R | GAGATAAGCTTTGCCTTCCCATTTTGTCTCTC | |
ACTRT1-F | TGTCATCAGCTCCGTCTTGG | |
ACTRT1-R | TACCAGTCCACGCTCAATGG | |
ZYF-F | TGTTCCTGATGACCCAGACTC | |
ZYF-R | ATCTGGGACTGTGCAGTGTG | |
C4orf74-F | GTTGAACTTTGTCCCCACGGACAGC | |
C4orf74-R | GAGATAAGCTTTGCCTTCCCATTTTGTCTCTC | |
CCL22-F | ACAGACTGCACTCCTGGTTG | |
CCL22-R | GACGTAATCACGGCAGCAGA |
图2 哺乳动物细胞 R-loop 靶向编辑技术的建立与鉴定 A:两种线性化慢病毒载体图;B:dCas9基因表达的鉴定;C: dCas9蛋白和dCas9-RNaseH1蛋白表达的鉴定;D:dCas9-RNaseH1-1 单克隆细胞系 R-loop 编辑效率验证
Fig. 2 Establishment and identification of R-loop targeted editing technology in mammalian cells A: Schematics of two linearized lentiviral vector constructs; B: verification of dCas9 gene expression; C: confirmation of dCas9 protein and dCas9-RNaseH1 protein expression; D: validation of R-loop editing efficiency in the dCas9-RNaseH1-1 monoclonal cell line, *** P﹤0.001;**** P﹤0.000 1
图4 筛选与 HeLa 细胞耐药性相关的R-loop位点 A:分别为顺铂和紫杉醇药物前后的dCas9-RNaseH1 SAM文库细胞系sgRNA文库基因表达变化散点图;B:不同药物处理对sgRNA文库基因表达影响的韦恩图;C:分别为顺铂药物处理耐药组和敏感组R-loop功能位点的GO和KEGG功能富集分析图;D:分别为紫杉醇药物处理耐药组和敏感组R-loop功能位点的GO和KEGG功能富集分析图
Fig. 4 Screening R-loop sites associated with drug resistance in HeLa cells A: Scatter plots showing changes in gene expression of sgRNA library in dCas9-RNaseH1 SAM cell lines before and after treatment with cisplatin and paclitaxel. B: Venn diagrams illustrating the impact of different drug treatments on gene expression of the sgRNA library. C: GO and KEGG enrichment analysis plots of R-loop functional sites in cisplatin-resistant and cisplatin-sensitive groups. D: GO and KEGG enrichment analysis plots of R-loop functional sites in paclitaxel-resistant and paclitaxel-sensitive groups
图5 候选基因的验证 A:不同抗肿瘤药物处理后不同sgRNA转染dCas9-RNaseH1细胞状态图;B:不同抗肿瘤药物处理后不同sgRNA转染dCas9-RNaseH1细胞系细胞数统计;C:不同sgRNA转染dCas9-RNaseH1细胞系R-loop编辑效率验证;D:不同sgRNA转染dCas9-RNaseH1细胞系转录表达差异验证
Fig. 5 Validation of candidate genes A: Cellular state diagram of dCas9-RNaseH1 cells transfected with different sgRNAs after treatment with different anti-tumor drugs. B: Cell count statistics of dCas9-RNaseH1 cell lines transfected with different sgRNAs after treatment with different anti-tumor drugs. C: Validation of R-loop editing efficiency in dCas9-RNaseH1 cell lines transfected with different sgRNAs. D: Validation of transcriptional expression differences in dCas9-RNaseH1 cell lines transfected with different sgRNAs. *P< 0.05, ** P < 0.01, *** P < 0.001, and **** P < 0.000 1
[1] |
Hegazy YA, Fernando CM, Tran EJ. The balancing act of R-loop biology: the good, the bad, and the ugly[J]. J Biol Chem, 2020, 295(4): 905-913.
doi: 10.1074/jbc.REV119.011353 pmid: 31843970 |
[2] |
Brickner JR, Garzon JL, Cimprich KA. Walking a tightrope: the complex balancing act of R-loops in genome stability[J]. Mol Cell, 2022, 82(12): 2267-2297.
doi: 10.1016/j.molcel.2022.04.014 pmid: 35508167 |
[3] | Niehrs C, Luke B. Regulatory R-loops as facilitators of gene expression and genome stability[J]. Nat Rev Mol Cell Biol, 2020, 21(3): 167-178. |
[4] | Li F, Zafar A, Luo L, et al. R-loops in genome instability and cancer[J]. Cancers, 2023, 15(20): 4986. |
[5] | Nussinov R, Tsai CJ, Jang H. Anticancer drug resistance: an update and perspective[J]. Drug Resist Updat, 2021, 59: 100796. |
[6] | Nie YL, Yao GY, Wei YJ, et al. Single-cell transcriptome sequencing analysis reveals intra-tumor heterogeneity in esophageal squamous cell carcinoma[J]. Environ Toxicol, 2024,(4). |
[7] | Ding S, Liu JF, Han X, et al. CRISPR/Cas9-mediated genome editing in cancer therapy[J]. Int J Mol Sci, 2023, 24(22): 16325. |
[8] | Behan FM, Iorio F, Picco G, et al. Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens[J]. Nature, 2019, 568(7753): 511-516. |
[9] | Xu CL, Li CY, Chen JW, et al. R-loop-dependent promoter-proximal termination ensures genome stability[J]. Nature, 2023, 621(7979): 610-619. |
[10] | Liu KP, Sun QW. Intragenic tRNA-promoted R-loops orchestrate transcription interference for plant oxidative stress responses[J]. Plant Cell, 2021, 33(11): 3574-3591. |
[11] |
Xu W, Li K, Li Q, et al. Quantitative, convenient, and efficient genome-wide R-loop profiling by ssDRIP-seq in multiple organisms[J]. Methods Mol Biol, 2022, 2528: 445-464.
doi: 10.1007/978-1-0716-2477-7_29 pmid: 35704209 |
[12] | Xu W, Xu H, Li K, et al. The R-loop is a common chromatin feature of the Arabidopsis genome[J]. Nat Plants, 2017, 3(9): 704-714. |
[13] | Xu W, Liu X, Li JJ, et al. ULI-ssDRIP-seq revealed R-loop dynamics during vertebrate early embryogenesis[J]. Cell Insight, 2024, 3(4): 100179. |
[14] | Konermann S, Brigham MD, Trevino AE, et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex[J]. Nature, 2015, 517(7536): 583-588. |
[15] | Stoyanov D, Stoyanov GS, Ivanov MN, et al. Transcription factor Zbtb20 as a regulator of malignancy and its practical applications[J]. Int J Mol Sci, 2023, 24(18): 13763. |
[16] |
Sun YB, Preiss NK, Valenteros KB, et al. Zbtb20 restrains CD8 T cell immunometabolism and restricts memory differentiation and antitumor immunity[J]. J Immunol, 2020, 205(10): 2649-2666.
doi: 10.4049/jimmunol.2000459 pmid: 32998985 |
[17] |
Wang Y, Zhang Y, Herman JG, et al. Epigenetic silencing of TMEM176A promotes esophageal squamous cell cancer development[J]. Oncotarget, 2017, 8(41): 70035-70048.
doi: 10.18632/oncotarget.19550 pmid: 29050260 |
[18] | Li HX, Yang WL, Zhang MY, et al. Methylation of TMEM176A, a key ERK signaling regulator, is a novel synthetic lethality marker of ATM inhibitors in human lung cancer[J]. Epigenomics, 2021, 13(17): 1403-1419. |
[19] |
Guo YL, Cao F, Hu S, et al. TMEM176A acts as a tumor suppressor gene in pancreatic cancer by inhibiting ERK signaling[J]. Discov Med, 2020, 30(161): 145-153.
pmid: 33593482 |
[20] | Liu Z, Yan WW, Liu SH, et al. Regulatory network and targeted interventions for CCDC family in tumor pathogenesis[J]. Cancer Lett, 2023, 565: 216225. |
[21] | Huang WY, Liao ZB, Zhang JC, et al. USF2-mediated upregulation of TXNRD1 contributes to hepatocellular carcinoma progression by activating Akt/mTOR signaling[J]. Cell Death Dis, 2022, 13(11): 917. |
[22] |
Zhao J, He CT, Fan XY, et al. Tripeptidyl peptidase II coordinates the homeostasis of calcium and lipids in the central nervous system and its depletion causes presenile dementia in female mice through calcium/lipid dyshomeostasis-induced autophagic degradation of CYP19A1[J]. Theranostics, 2024, 14(4): 1390-1429.
doi: 10.7150/thno.92571 pmid: 38389851 |
[23] |
Lei XY, Lin H, Wang JQ, et al. Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression[J]. Nat Commun, 2022, 13(1): 3882.
doi: 10.1038/s41467-022-31417-x pmid: 35794100 |
[24] | Shao CW, Hedberg C, Qian Y. In vivo imaging of the macrophage migration inhibitory factor in liver cancer with an activity-based probe[J]. Anal Chem, 2021, 93(4): 2152-2159. |
[25] | Zhang XZ, Wei LL, Zhang XH, et al. Loss of perinuclear theca ACTRT1 causes acrosome detachment and severe male subfertility in mice[J]. Development, 2022, 149(12): dev200489. |
[26] | Park HS, Papanastasi E, Blanchard G, et al. ARP-T1-associated Bazex-Dupré-Christol syndrome is an inherited basal cell cancer with ciliary defects characteristic of ciliopathies[J]. Commun Biol, 2021, 4(1): 544. |
[27] |
Husni RE, Shiba-Ishii A, Nakagawa T, et al. DNA hypomethylation-related overexpression of SFN, GORASP2 and ZYG11A is a novel prognostic biomarker for early stage lung adenocarcinoma[J]. Oncotarget, 2019, 10(17): 1625-1636.
doi: 10.18632/oncotarget.26676 pmid: 30899432 |
[28] |
Wang X, Sun Q, Chen C, et al. ZYG11A serves as an oncogene in non-small cell lung cancer and influences CCNE1 expression[J]. Oncotarget, 2016, 7(7): 8029-8042.
doi: 10.18632/oncotarget.6904 pmid: 26771237 |
[29] | Ren AA, Snellings DA, Su YS, et al. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism[J]. Nature, 2021, 594(7862): 271-276. |
[30] |
Kar S, Samii A, Bertalanffy H. PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations[J]. Neurosurg Rev, 2015, 38(2): 229-237.
doi: 10.1007/s10143-014-0597-8 pmid: 25403688 |
[31] |
Röhrle N, Knott MML, Anz D. CCL22 signaling in the tumor environment[J]. Adv Exp Med Biol, 2020, 1231: 79-96.
doi: 10.1007/978-3-030-36667-4_8 pmid: 32060848 |
[32] |
Hoeller D, Hecker CM, Dikic I. Ubiquitin and ubiquitin-like proteins in cancer pathogenesis[J]. Nat Rev Cancer, 2006, 6(10): 776-788.
pmid: 16990855 |
[33] |
Vervoort SJ, Welsh SA, Devlin JR, et al. The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer[J]. Cell, 2021, 184(12): 3143-3162.e32.
doi: 10.1016/j.cell.2021.04.022 pmid: 34004147 |
[34] | Transcriptome Core Group PCAWG, Calabrese C, Davidson NR, et al. Genomic basis for RNA alterations in cancer[J]. Nature, 2020, 578(7793): 129-136. |
[1] | 朱恬仪, 孔桂美, 焦红梅, 郭停停, 乌日汗, 刘翠翠, 高成凤, 李国才. CRISPR/Cas9介导的adeG基因敲除大肠杆菌细菌模型的建立[J]. 生物技术通报, 2024, 40(2): 55-64. |
[2] | 薛宁, 王瑾, 李世新, 刘叶, 程海娇, 张玥, 毛雨丰, 王猛. 多基因同步调控结合高通量筛选构建高产L-苯丙氨酸的谷氨酸棒杆菌工程菌株[J]. 生物技术通报, 2023, 39(9): 268-280. |
[3] | 陈勇, 李亚鑫, 王亚瑄, 梁露洁, 冯思源, 田国宝. MCR-1介导多黏菌素耐药性的分子机制研究进展[J]. 生物技术通报, 2023, 39(6): 102-108. |
[4] | 刘金升, 陈振娅, 霍毅欣, 郭淑元. FACS技术在酶定向进化中的应用[J]. 生物技术通报, 2023, 39(10): 93-106. |
[5] | 文畅, 刘晨, 卢诗韵, 许忠兵, 艾超凡, 廖汉鹏, 周顺桂. 一株新的多重耐药福氏志贺菌噬菌体生物学特性及基因组分析[J]. 生物技术通报, 2022, 38(9): 127-135. |
[6] | 胡功政, 崔小蝶, 翟亚军, 贺丹丹. 细菌黏菌素耐药性及其逆转机制研究进展[J]. 生物技术通报, 2022, 38(9): 28-34. |
[7] | 刘艺云, 邓利敏, 岳慧颖, 岳超, 刘健华. 质粒接合转移及其抑制剂的研究进展[J]. 生物技术通报, 2022, 38(9): 35-46. |
[8] | 刘成程, 胡小芳, 冯友军. 细菌耐药:生化机制与应对策略[J]. 生物技术通报, 2022, 38(9): 4-16. |
[9] | 刘晓黎, 童真艺, 赵亮, 尹丽, 刘晨光. 非抗生素类活性物质抗幽门螺杆菌研究进展[J]. 生物技术通报, 2022, 38(9): 96-105. |
[10] | 陈福暖, 黄瑜, 蔡佳, 王忠良, 简纪常, 王蓓. ABC转运蛋白结构及其在细菌致病性中的研究进展[J]. 生物技术通报, 2022, 38(6): 43-52. |
[11] | 赵海晴, 李耘, 梁严内, 刘哲, 任亚林, 李金娟. 联合用药对嗜水气单胞菌耐药性影响研究进展[J]. 生物技术通报, 2022, 38(6): 53-65. |
[12] | 朱浩, 张严伟, 刘润, 梁艳, 杨奕, 徐天乐, 杨章平. 抗生素佐剂与抗生素联用的抑菌作用研究进展[J]. 生物技术通报, 2022, 38(6): 66-73. |
[13] | 张雪, 谭玉萌, 蒋海霞, 杨广宇. 基于单细胞超高通量筛选的α-1,2-岩藻糖基转移酶定向进化[J]. 生物技术通报, 2022, 38(1): 289-298. |
[14] | 田露, 吴咪, 缑敬轩, 龚国利. 细菌素的研究与应用进展[J]. 生物技术通报, 2021, 37(4): 224-233. |
[15] | 龚争, 张俊杰, 钟登科. 华东地区猪丹毒杆菌分离株的生物学特征及其耐药析[J]. 生物技术通报, 2020, 36(6): 174-182. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||