生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 68-77.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0732
• 菌物功效及作用机制专题(专题主编:王迪 教授) • 上一篇 下一篇
王雨阳(), 刘朋(), 张忠, 陈万超, 吴迪, 李文, 杨焱()
收稿日期:
2024-07-29
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
刘朋,女,博士,助理研究员,研究方向:食用菌功能活性评价;E-mail: liupeng@saas.sh.cn;作者简介:
王雨阳,男,硕士研究生,研究方向:食用菌活性物质制备及活性评价;E-mail: 1056688589@qq.com
基金资助:
WANG Yu-yang(), LIU Peng(), ZHANG Zhong, CHEN Wan-chao, WU Di, LI Wen, YANG Yan()
Received:
2024-07-29
Published:
2024-11-26
Online:
2024-12-19
摘要:
【目的】 分离、筛选瓦尼桑黄(Sanghuangporus vaninii)子实体中具有良好抗肿瘤活性的多酚组分,并对其抗肿瘤活性和潜在作用机制进行解析。【方法】 采用超声辅助提取法提取乙酸乙酯部位的组分,通过对肝癌细胞HepG-2的抑制活性筛选出具有良好抗肿瘤作用的多酚组分,基于超高效液相色谱-四极杆飞行时间质谱(UPLC-Q-TOF-MS)技术鉴定其主要成分,利用网络药理学策略阐释其潜在抗肿瘤作用机制。【结果】 分离制备获得了5种(SVa-SVe)多酚组分,其中SVe多酚组分表现出独特的抗肿瘤活性,100 µg/mL浓度下对HepG-2细胞抑制率为76.54%。SVe可以显著地促进HepG-2细胞凋亡和诱导其细胞周期阻滞,并呈现剂量依赖性。成分分析显示,SVe主要由31种化合物组成,基于网络药理学分析表明,SVe中的osmundacetone、hispolon、phellibaumin A、davallialactone等关键化合物通过与多个靶点蛋白作用(STAT3、mTOR、VEGFA、SRC、ERBB2和HSP90AA),发挥抗肿瘤活性。【结论】 来源于桑黄的多酚提取物SVe通过诱导细胞凋亡和细胞周期阻滞对HepG-2细胞具有独特的抑制活性,其中的多酚化合物通过多靶点发挥作用。
王雨阳, 刘朋, 张忠, 陈万超, 吴迪, 李文, 杨焱. 基于网络药理学探究桑黄多酚的体外抗肿瘤作用及其机制[J]. 生物技术通报, 2024, 40(11): 68-77.
WANG Yu-yang, LIU Peng, ZHANG Zhong, CHEN Wan-chao, WU Di, LI Wen, YANG Yan. In Vitro Anti-tumor Effect and Its Mechanism of Polyphenols from Sanghuangporus vaninii Based on Network Pharmacology[J]. Biotechnology Bulletin, 2024, 40(11): 68-77.
图1 分离纯化的多酚组分高效液相图谱 a-e分别为SVa、SVb、SVc、SVd和SVe
Fig. 1 High performance liquid chromatography of merged components a-e are SVa, SVb, SVc, SVd and SVe, respectively
多酚组分 Palyphenols components | 样品浓度Sample concentration/(µg·mL-1) | ||||
---|---|---|---|---|---|
6.25 | 12.5 | 25.0 | 50.0 | 100.0 | |
SVa | 40.38±2.38 a | 38.95±3.95 b | 47.76±1.76 a | 80.35±1.35 a | 81.06±1.06 b |
SVb | 24.69±2.69 c | 34.12±3.12 c | 36.17±2.17 c | 47.67±1.67 c | 52.40±2.35 d |
SVc | 1.25±0.52 e | 6.01±1.01 e | 8.79±1.79 e | 14.34±1.34 e | 23.35±2.40 f |
SVd | 1.31±0.31 d | 7.38±1.38 d | 13.98±0.93 d | 19.88±1.88 d | 30.89±3.89 e |
SVe | 38.54±1.00 b | 45.53±2.53 a | 63.40±1.40 b | 65.77±1.77 b | 76.54±2.65 c |
表1 不同桑黄多酚组分对HepG-2细胞活力的抑制作用
Table 1 Inhibition of HepG-2 cells viability by different polyphenols components of S. vaninii %
多酚组分 Palyphenols components | 样品浓度Sample concentration/(µg·mL-1) | ||||
---|---|---|---|---|---|
6.25 | 12.5 | 25.0 | 50.0 | 100.0 | |
SVa | 40.38±2.38 a | 38.95±3.95 b | 47.76±1.76 a | 80.35±1.35 a | 81.06±1.06 b |
SVb | 24.69±2.69 c | 34.12±3.12 c | 36.17±2.17 c | 47.67±1.67 c | 52.40±2.35 d |
SVc | 1.25±0.52 e | 6.01±1.01 e | 8.79±1.79 e | 14.34±1.34 e | 23.35±2.40 f |
SVd | 1.31±0.31 d | 7.38±1.38 d | 13.98±0.93 d | 19.88±1.88 d | 30.89±3.89 e |
SVe | 38.54±1.00 b | 45.53±2.53 a | 63.40±1.40 b | 65.77±1.77 b | 76.54±2.65 c |
图2 SVe抑制HepG-2细胞生长。SVe对HepG-2细胞凋亡(A)、线粒体膜电位(B)及细胞周期分布(C)情况的影响 *:与0组比较有显著差异(*P<0.05,**P<0.01, ***P<0.001)
Fig. 2 SVe inhibited the growth of HepG-2 cells. The effects of SVe on apoptosis(A), mitochondrial membrane potential (B), and cell cycle distribution(C)of HepG-2 cells There were significant differences compared with group 0(* P<0.05, ** P<0.01, *** P<0.001)
序号 No. | 化合物Component | 分子式 Molecular formula | 保留时间 RT/min |
---|---|---|---|
1 | 4-(4-hydroxyphenyl)-3-buten-2-one | C10H10O2 | 19.6 |
2 | Osmundacetone | C10H10O3 | 16.75 |
3 | Hispolon | C12H12O4 | 20.08 |
4 | 7-Acetoxycoumarin-3-carboxylic acid | C12H8O6 | 15.95 |
5 | Hispidin | C13H10O5 | 18.82 |
6 | Citrinin | C13H14O5 | 22.18 |
7 | Phelligridin_J | C13H6O8 | 74.18 |
8 | 7-O-methyleriodictyol | C16H14O6 | 19.49 |
9 | Palmitic acid | C16H32O2 | 59.4 |
10 | Linoleic acid | C18H32O2 | 39.35 |
11 | phellibaumin A | C19H12O7 | 26.2 |
12 | Phelligridin_C | C20H12O7 | 29.18 |
13 | Phelligridin_D | C20H12O8 | 26.46 |
14 | inoscavin_D | C21H16O8 | 28.71 |
15 | Phellibaumin_B | C22H16O9 | 25.3 |
16 | Hydroxy-docosanoic acid | C22H44O3 | 68.69 |
17 | inoscavin_C | C23H16O8 | 28.62 |
18 | interfungin_B | C23H20O8 | 34.9 |
19 | Kielcorin | C24H20O8 | 15.81 |
20 | Hydroxy-tetracosanoic acid | C24H48O3 | 72.51 |
21 | Inoscavin A | C25H18O9 | 25.04 |
22 | Davallialactone | C25H20O9 | 21.06 |
23 | Hypholomine B | C26H18O10 | 23.25 |
24 | Hypholomine A | C26H18O9 | 29.22 |
25 | SCHEMBL8676491 | C27H20O10 | 32.61 |
26 | Phelligridin_I | C33H20O13 | 27.33 |
27 | Phelligridin_I_500 | C33H20O13 | 26.3 |
28 | phelligridimer A | C52H32O20 | 26.82 |
29 | protocatechuic aldehyde | C7H6O3 | 11.25 |
30 | 3-Hydroxycinnamic acid | C9H8O3 | 13.47 |
31 | Caffeic acid | C9H8O4 | 13.58 |
表2 SVe成分分析
Table 2 Compounds analysis in SVe
序号 No. | 化合物Component | 分子式 Molecular formula | 保留时间 RT/min |
---|---|---|---|
1 | 4-(4-hydroxyphenyl)-3-buten-2-one | C10H10O2 | 19.6 |
2 | Osmundacetone | C10H10O3 | 16.75 |
3 | Hispolon | C12H12O4 | 20.08 |
4 | 7-Acetoxycoumarin-3-carboxylic acid | C12H8O6 | 15.95 |
5 | Hispidin | C13H10O5 | 18.82 |
6 | Citrinin | C13H14O5 | 22.18 |
7 | Phelligridin_J | C13H6O8 | 74.18 |
8 | 7-O-methyleriodictyol | C16H14O6 | 19.49 |
9 | Palmitic acid | C16H32O2 | 59.4 |
10 | Linoleic acid | C18H32O2 | 39.35 |
11 | phellibaumin A | C19H12O7 | 26.2 |
12 | Phelligridin_C | C20H12O7 | 29.18 |
13 | Phelligridin_D | C20H12O8 | 26.46 |
14 | inoscavin_D | C21H16O8 | 28.71 |
15 | Phellibaumin_B | C22H16O9 | 25.3 |
16 | Hydroxy-docosanoic acid | C22H44O3 | 68.69 |
17 | inoscavin_C | C23H16O8 | 28.62 |
18 | interfungin_B | C23H20O8 | 34.9 |
19 | Kielcorin | C24H20O8 | 15.81 |
20 | Hydroxy-tetracosanoic acid | C24H48O3 | 72.51 |
21 | Inoscavin A | C25H18O9 | 25.04 |
22 | Davallialactone | C25H20O9 | 21.06 |
23 | Hypholomine B | C26H18O10 | 23.25 |
24 | Hypholomine A | C26H18O9 | 29.22 |
25 | SCHEMBL8676491 | C27H20O10 | 32.61 |
26 | Phelligridin_I | C33H20O13 | 27.33 |
27 | Phelligridin_I_500 | C33H20O13 | 26.3 |
28 | phelligridimer A | C52H32O20 | 26.82 |
29 | protocatechuic aldehyde | C7H6O3 | 11.25 |
30 | 3-Hydroxycinnamic acid | C9H8O3 | 13.47 |
31 | Caffeic acid | C9H8O4 | 13.58 |
图4 SVe与疾病靶点交集图(A)和筛选的14个有效成分与共同交集靶点之间的相关图(B)
Fig. 4 Intersection diagram of SVe and disease targets and correlation diagram between the 14 selected active ingredients and their common intersection targets(B)
名称 Name | 等级值 Degree | 介数中心度 Betweenness centrality | 紧密中心度 Closeness centrality |
---|---|---|---|
STAT3 | 48 | 0.011951917 | 1 |
ERBB2 | 48 | 0.011951917 | 1 |
HSP90AA1 | 48 | 0.011951917 | 1 |
mTOR | 48 | 0.011951917 | 1 |
SRC | 48 | 0.011951917 | 1 |
VEGFA | 48 | 0.011951917 | 1 |
MAPK1 | 46 | 0.009286467 | 0.96 |
BCL2L1 | 46 | 0.010953764 | 0.96 |
ESR1 | 46 | 0.010049717 | 0.96 |
EGFR | 44 | 0.009743413 | 0.923076923 |
AR | 40 | 0.006204746 | 0.857142857 |
EP300 | 40 | 0.00557225 | 0.857142857 |
CDK4 | 40 | 0.005307013 | 0.857142857 |
MMP9 | 40 | 0.005991339 | 0.857142857 |
CCNA2 | 38 | 0.003552283 | 0.827586207 |
STAT1 | 38 | 0.00459399 | 0.827586207 |
GSK3B | 38 | 0.004853451 | 0.827586207 |
IGF1R | 36 | 0.002201527 | 0.8 |
MAP2K1 | 36 | 0.001906972 | 0.8 |
TERT | 36 | 0.004834839 | 0.8 |
ABL1 | 36 | 0.00292773 | 0.8 |
PPARG | 34 | 0.002278796 | 0.774193548 |
PARP1 | 34 | 0.001530318 | 0.774193548 |
MET | 30 | 0.00145824 | 0.727272727 |
KIT | 30 | 0.001708309 | 0.727272727 |
表3 SVe预测靶点的交互网络的拓扑分析
Table 3 Topological analysis of interactive networks for SVe target prediction
名称 Name | 等级值 Degree | 介数中心度 Betweenness centrality | 紧密中心度 Closeness centrality |
---|---|---|---|
STAT3 | 48 | 0.011951917 | 1 |
ERBB2 | 48 | 0.011951917 | 1 |
HSP90AA1 | 48 | 0.011951917 | 1 |
mTOR | 48 | 0.011951917 | 1 |
SRC | 48 | 0.011951917 | 1 |
VEGFA | 48 | 0.011951917 | 1 |
MAPK1 | 46 | 0.009286467 | 0.96 |
BCL2L1 | 46 | 0.010953764 | 0.96 |
ESR1 | 46 | 0.010049717 | 0.96 |
EGFR | 44 | 0.009743413 | 0.923076923 |
AR | 40 | 0.006204746 | 0.857142857 |
EP300 | 40 | 0.00557225 | 0.857142857 |
CDK4 | 40 | 0.005307013 | 0.857142857 |
MMP9 | 40 | 0.005991339 | 0.857142857 |
CCNA2 | 38 | 0.003552283 | 0.827586207 |
STAT1 | 38 | 0.00459399 | 0.827586207 |
GSK3B | 38 | 0.004853451 | 0.827586207 |
IGF1R | 36 | 0.002201527 | 0.8 |
MAP2K1 | 36 | 0.001906972 | 0.8 |
TERT | 36 | 0.004834839 | 0.8 |
ABL1 | 36 | 0.00292773 | 0.8 |
PPARG | 34 | 0.002278796 | 0.774193548 |
PARP1 | 34 | 0.001530318 | 0.774193548 |
MET | 30 | 0.00145824 | 0.727272727 |
KIT | 30 | 0.001708309 | 0.727272727 |
[1] | 陈万超, 杨焱, 张劲松, 等. 桑黄类真菌活性代谢产物的研究进展[J]. 食用菌学报, 2020, 27(4): 188-201. |
Chen WC, Yang Y, Zhang JS, et al. Recent advances in bioactive metabolites from ‘Sanghuang’ mushrooms[J]. Acta Edulis Fungi, 2020, 27(4): 188-201. | |
[2] | 霍进喜, 李有贵, 孙雨晴, 等. 桑黄水提物诱导黑色素瘤细胞系B16-F10 G0/G1期阻滞的研究[J]. 蚕业科学, 2023, 49(6): 544-550. |
Huo JX, Li YG, Sun YQ, et al. Study on the induction of G0/G1 phase arrest in melanoma cell line B16-F10 by aqueous extracts of Sanghuang[J]. Acta Sericologica Sin, 2023, 49(6): 544-550. | |
[3] | 轩贵平, 李天平, 李云贵, 等. 桑黄有效成分抗肿瘤的作用及研究进展[J]. 临床医学进展, 2024, 14(5):2489-2494. |
Xuan GP, Li TP, Li YG, et al. The anti-tumor effect and research progress of active ingredients in Sanghuang[J]. Advances in Clinical Medicine, 2024, 14(5):2489-2494. | |
[4] | 宋吉玲, 陆娜, 闫静, 等. 桑枝屑对瓦尼桑黄主要活性成分含量和体外抗氧化活性的影响[J]. 菌物学报, 2023, 42(4): 949-960. |
Song JL, Lu N, Yan J, et al. Effects of mulberry sawdust on the content of main active components and antioxidant activities in Sanghuangporus vaninii[J]. Mycosystema, 2023, 42(4): 949-960. | |
[5] | 闫帅帅, 郭辛茹, 徐建国, 等. 桑黄裂蹄针层孔菌提取物生物活性成分及功能特性分析[J]. 食品研究与开发, 2023, 44(23): 22-28. |
Yan SS, Guo XR, Xu JG, et al. Analysis of bioactive components and functional properties of extract from Phellinus linteus[J]. Food Res Dev, 2023, 44(23): 22-28. | |
[6] | 李志军, 包海鹰. 中药桑黄粗毛纤孔菌的化学成分与药理作用研究进展[J]. 菌物研究, 2022, 20(3): 203-213. |
Li ZJ, Bao HY. Research advances on chemical constituents and pharmacological effects of traditional Chinese medicine Sanghuang—Inonotus hispidus[J]. J Fungal Res, 2022, 20(3): 203-213. | |
[7] | 昝立峰, 郭海燕, 包海鹰, 等. 鲍姆桑黄子实体提取物的体外细胞毒活性及其化学成分分析[J]. 菌物学报, 2023, 42(4): 961-972. |
Zan LF, Guo HY, Bao HY, et al. Characterization of cytotoxicity and chemical constituents of extracts of Sanghuangporus baumii basidiomata[J]. Mycosystema, 2023, 42(4): 961-972. | |
[8] | 孙雨晴, 吴伟杰, 钟石, 等. 桑黄子实体中多酚含量测定的方法学研究[J]. 浙江农业科学, 2022, 63(9): 2117-2120. |
Sun YQ, Wu WJ, Zhong S, et al. Methodological study on determination of polyphenol content in Phellinus igniarius fruiting body[J]. J Zhejiang Agric Sci, 2022, 63(9): 2117-2120. | |
[9] | 张俊峰, 张忠, 汪雯翰, 等. 桑黄菌丝体和子实体中次级代谢产物及其活性的比较[J]. 菌物学报, 2020, 39(2): 398-408. |
Zhang JF, Zhang Z, Wang WH, et al. Comparison of active secondary metabolites between mycelia and fruiting bodies of Sanghuangporous Sanghuang[J]. Mycosystema, 2020, 39(2): 398-408. | |
[10] | 于荣利, 贾薇, 张劲松, 等. 八种食药用菌子实体醇提物对乳腺癌细胞MCF-7的体外影响[J]. 食用菌学报, 2017, 24(2): 88-92. |
Yu RL, Jia W, Zhang JS, et al. Effect of ethanolic extracts from eight kinds of medicinal and edible fungi on breast cancer cell MCF-7 in vitro[J]. Acta Edulis Fungi, 2017, 24(2): 88-92. | |
[11] | Zhang XQ, Li Z, Yang P, et al. Polyphenol scaffolds in tissue engineering[J]. Mater Horiz, 2021, 8(1): 145-167. |
[12] | Messaoudene M, Pidgeon R, Richard C, et al. A natural polyphenol exerts antitumor activity and circumvents anti-PD-1 resistance through effects on the gut microbiota[J]. Cancer Discov, 2022, 12(4): 1070-1087. |
[13] | 胡一凡, 高晓余, 苏俊宇, 等. 多酚、黄酮功能性成分导向的草果种质资源评价[J]. 热带作物学报, 2024, 45(5): 915-927. |
Hu YF, Gao XY, Su JY, et al. Evaluation of Amomum tsao-ko germplasm resources oriented by functional components of polyphenols and flavonoids[J]. Chin J Trop Crops, 2024, 45(5): 915-927. | |
[14] | Luca SV, Macovei I, Bujor A, et al. Bioactivity of dietary polyphenols: The role of metabolites[J]. Crit Rev Food Sci Nutr, 2020, 60(4): 626-659. |
[15] | Guo SS, Duan WW, Wang YX, et al. Component analysis and Anti-Colorectal cancer mechanism via AKT/mTOR signalling pathway of Sanghuangporus vaninii extracts[J]. Molecules, 2022, 27(4): 1153. |
[16] | 李天, 王婷, 邢宝娟, 等. 女贞苷通过阻滞G1/S期抑制非小细胞肺癌奥西替尼耐药细胞增殖[J]. 药学学报, 2023, 58(11): 3349-3353. |
Li T, Wang T, Xing BJ, et al. Ligustroflavone mediates the resistance of non-small cell lung cancer to osimertinib by arresting G1/S phase[J]. Acta Pharm Sin, 2023, 58(11): 3349-3353. | |
[17] | 孙雨晴, 伏瑶, 纪藕霄, 等. 重楼皂苷VII对弥漫大B细胞淋巴瘤细胞增殖、凋亡及细胞周期的影响[J]. 中华血液学杂志, 2024, 45(4): 391-395. |
Sun YQ, Fu Y, Ji OX, et al. Effects of polyphyllin VII on proliferation, apoptosis and cell cycle of diffuse large B-cell lymphoma cells[J]. Chin J Hematol, 2024, 45(4): 391-395. | |
[18] | Jamasbi E, Hamelian M, Hossain MA, et al. The cell cycle, cancer development and therapy[J]. Mol Biol Rep, 2022, 49(11): 10875-10883. |
[19] | Weston WA, Barr AR. A cell cycle centric view of tumour dormancy[J]. Br J Cancer, 2023, 129(10): 1535-1545. |
[20] | 赵宁, 黄永吉, 马广斌, 等. 鞣花酸对骨髓瘤SP2/0细胞的作用[J]. 医药导报, 2014, 33(10): 1321-1325. |
Zhao N, Huang YJ, Ma GB, et al. Effect of ellagic acid on myeloma SP2/0 cells[J]. Her Med, 2014, 33(10): 1321-1325. | |
[21] | 冯甜, 刘盟, 程路峰, 等. 基于凋亡和自噬途径的石榴皮多酚对人前列腺癌PC3细胞的抑制作用机制研究[J]. 中国药房, 2020, 31(16): 1978-1983. |
Feng T, Liu M, Cheng LF, et al. Study on the inhibitory mechanism of pomegranate peel polyphenols on human prostate cancer PC3Cells based on apoptosis and autophagy pathway[J]. China Pharm, 2020, 31(16): 1978-1983. | |
[22] | 伊娟娟, 王振宇, 周丽萍, 等. 红松松塔多酚对S180荷瘤小鼠抗肿瘤及免疫活性[J]. 食品工业科技, 2017, 38(6): 345-349. |
Yi JJ, Wang ZY, Zhou LP, et al. Antitumor and immunomodulation activities of polyphenols from pinecone of Pinus koraiensis in cancer-bearing S180 mice[J]. Sci Technol Food Ind, 2017, 38(6): 345-349. | |
[23] | Gao H, Yin CM, Li C, et al. Phenolic profile, antioxidation and anti-proliferation activity of phenolic-rich extracts from Sanghuangporusvaninii[J]. Curr Res Food Sci, 2023, 6: 100519. |
[24] | Chen WH, Tan HY, Liu Q, et al. A review: the bioactivities and pharmacological applications of Phellinus linteus[J]. Molecules, 2019, 24(10): 1888. |
[25] | Lee YS, Kang YH, Jung JY, et al. Inhibitory constituents of aldose reductase in the fruiting body of Phellinus linteus[J]. Biol Pharm Bull, 2008, 31(4): 765-768. |
[26] | Sarfraz A, Rasul A, Sarfraz I, et al. Hispolon: a natural polyphenol and emerging cancer killer by multiple cellular signaling pathways[J]. Environ Res, 2020, 190: 110017. |
[27] | Islam MT, Ali ES, Khan IN, et al. Anticancer perspectives on the fungal-derived polyphenolic hispolon[J]. Anticancer Agents Med Chem, 2020, 20(14): 1636-1647. |
[28] | Yang Y, He PY, Hou YH, et al. Osmundacetone modulates mitochondrial metabolism in non-small cell lung cancer cells by hijacking the glutamine/glutamate/α-KG metabolic axis[J]. Phytomedicine, 2022, 100: 154075. |
[29] | Ke C, Chen CH, Yang M, et al. Osmundacetone inhibits angiogenesis of infantile hemangiomas through inducing caspases and reducing VEGFR2/MMP9[J]. Anticancer Agents Med Chem, 2024, 24(2): 125-131. |
[30] | Zan LF, Xin JC, Guo HY, et al. Systematic characterization of active antitumor constituents from the shaggy bracket medicinal mushroom Inonotus hispidus(Agaricomycetes)by UPLC-Q-TOF/MS and network pharmacology[J]. Int J Med Mushrooms, 2023, 25(3): 47-62. |
[31] | 纪红燕, 吴佳妮, 吴欣圆, 等. 内生真菌诱导子对火木层孔菌次级代谢的影响[J]. 西北药学杂志, 2021, 36(6): 871-875. |
Ji HY, Wu JN, Wu XY, et al. Effects of endophytic fungus elicitors on secondary metabolism of Phellinus igniarius[J]. Northwest Pharm J, 2021, 36(6): 871-875. | |
[32] | Soosanabadi M, Ghahfarokhi AM, Pourghazi F, et al. Expression of ERBB gene family in females with breast cancer and its correlation with clinicopathological characteristics of the disease[J]. Mol Biol Rep, 2022, 49(9): 8547-8553. |
[33] | He Y, Sun MM, Zhang GG, et al. Targeting PI3K/Akt signal transduction for cancer therapy[J]. Signal Transduct Target Ther, 2021, 6(1): 425. |
[34] | Gill BS, Navgeet, Mehra R, et al. Ganoderic acid, lanostanoid triterpene: a key player in apoptosis[J]. Invest New Drugs, 2018, 36(1): 136-143. |
[1] | 滕文龙, 吴永娜, 王德富, 牛颜冰. 连翘叶茶对肝癌细胞增殖和迁移功能的影响及其作用机制[J]. 生物技术通报, 2024, 40(4): 287-296. |
[2] | 赵睿萌, 王梦雨, 吕国英, 宋婷婷, 张作法. 药用真菌桑黄中多酚类成分药用机理研究进展[J]. 生物技术通报, 2024, 40(11): 3-13. |
[3] | 黄小丹, 陈梦雨, 黄文洁, 张名位, 晏石娟. 基于代谢组学的植物多酚及其肠道健康效应研究进展[J]. 生物技术通报, 2021, 37(1): 123-136. |
[4] | 常允建, 康冉, 薛璇, 王韶畅, 赵庆文, 郭志云. 肝癌中增强子调控miRNA前馈环路的识别与功能分析[J]. 生物技术通报, 2019, 35(5): 140-145. |
[5] | 单婷婷 ,陈晓梅 ,郭顺星 ,王倩清 ,王爱荣. 石斛属植物茎部总RNA提取方法的研究[J]. 生物技术通报, 2018, 34(6): 54-58. |
[6] | 姚恒, 杨大海, 白戈, 谢贺. 利用CRISPR/Cas9技术定点敲除烟草多酚氧化酶基因NtPPO1[J]. 生物技术通报, 2018, 34(11): 97-102. |
[7] | 张晶晶, 金小宝, 李小波, 汪洁, 马艳. 过表达Glypican-3对高转移性肝癌细胞HCCLM3生物学行为的影响[J]. 生物技术通报, 2017, 33(12): 176-184. |
[8] | 姚杨,苏杰,刘凯歌,徐锐. 上调基因-11(URG11)生物信息学与功能分析[J]. 生物技术通报, 2016, 32(3): 203-208. |
[9] | 张文美, 丁妍, 郭兴荣, 李东升, 赵万红, 王小莉. TALEN介导的CXCR4敲除肝癌细胞株的建立[J]. 生物技术通报, 2016, 32(2): 225-228. |
[10] | 李铎,李佳文,袁群琛,林川川,宋关斌. 溶血磷脂酸对不同转移性肝癌细胞迁移行为的影响[J]. 生物技术通报, 2016, 32(12): 189-194. |
[11] | 赵静, 李楠, 吴茹, 杨占威, 胡文兵, 王文君. 食物功能性成分对动物基因组DNA甲基化影响的研究进展[J]. 生物技术通报, 2016, 32(1): 15-19. |
[12] | 李斌, 许晓亚, 杨刚刚, 崔晴晴, 杨亚娟, 徐存拴. 重组人白细胞介素-1α在毕赤酵母中的表达、纯化及生物学活性检测[J]. 生物技术通报, 2015, 31(9): 244-250. |
[13] | 屈政, 罗磊, 杨彬, 康新艳. 响应面优化丙酮粉法提取金银花多酚氧化酶[J]. 生物技术通报, 2015, 31(7): 201-206. |
[14] | 周晓明;傅海媛;黄亚娟;侯利平;孙云波;原剑;杨保安;郑俊杰;甄蓓;肖汉族;貌盼勇;魏开华;. 多肽抗体检测原发性肝癌血清标志物ELISA方法的建立及应用[J]. , 2012, 0(05): 179-184. |
[15] | 姚杨;苏杰;刘凯歌;徐锐;成碧萍;. 乙肝相关性肝癌中新基因CHCHD2的生物信息学分析[J]. , 2012, 0(03): 179-185. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||