生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 3-13.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0668
• 菌物功效及作用机制专题(专题主编:王迪 教授) • 上一篇 下一篇
赵睿萌1,2(), 王梦雨2, 吕国英2, 宋婷婷2, 张作法2()
收稿日期:
2024-07-12
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
张作法,男,博士,副研究员,研究方向:食药用菌资源综合利用;E-mail: zzf2050@163.com作者简介:
赵睿萌,女,硕士研究生,研究方向:药食同源产品研制与评估;E-mail: 15020629688@163.com
基金资助:
ZHAO Rui-meng1,2(), WANG Meng-yu2, LYU Guo-ying2, SONG Ting-ting2, ZHANG Zuo-fa2()
Received:
2024-07-12
Published:
2024-11-26
Online:
2024-12-19
摘要:
桑黄为锈革孔菌科、桑黄孔菌属真菌统称,属多年生大型珍稀药用真菌,因其较强的生物活性,引起了国际上不同领域学者的广泛关注和研究。现代药理学研究发现,桑黄具有极高的药用价值,主要是其含有丰富的生物活性物质,显效成分尤其是多酚类物质是最主要的活性成分之一,赋予桑黄抗肿瘤、抗氧化、抗衰老、降血糖、增强免疫力及修复损伤等多种重要的药理活性。本文梳理了桑黄种属分类发展进程并总结目前桑黄主要分布地区,整理并归纳了桑黄类真菌中分离得到的多酚类组分及其生物活性;在目前对桑黄生物活性研究的基础上,系统总结了主要多酚类组分药用功效的研究进展,并详细介绍了多酚类组分在抗氧化、抗炎症、抗肿瘤和糖尿病并发症辅助治疗等功效的潜在作用机理;进一步讨论了目前桑黄中多酚类物质研究存在的主要问题,对桑黄的发展瓶颈进行了探讨,并展望了桑黄类真菌多酚类物质的后续研究方向,为提升桑黄多酚类物质治疗效果及作为药物的合理应用奠定理论基础,为桑黄多酚类物质在药物方面的应用提供新思路。
赵睿萌, 王梦雨, 吕国英, 宋婷婷, 张作法. 药用真菌桑黄中多酚类成分药用机理研究进展[J]. 生物技术通报, 2024, 40(11): 3-13.
ZHAO Rui-meng, WANG Meng-yu, LYU Guo-ying, SONG Ting-ting, ZHANG Zuo-fa. Progress on the Medicinal Mechanism of Polyphenols in the Medicinal Fungus Sanghuang[J]. Biotechnology Bulletin, 2024, 40(11): 3-13.
物种 Species | 主要分布地区 Main distribution area |
---|---|
桑树桑黄S. sanghuang | 吉林省,四川省,湖南省,云南省,浙江省 |
杨树桑黄S. vaninii | 黑龙江省,辽宁省,吉林省,浙江省 |
暴马桑黄S. baumii | 黑龙江省,辽宁省,吉林省,山东省,河北省,山西省 |
高山桑黄S. alpinus | 西藏自治区,湖北省 |
锦带花桑黄S. weigelae | 贵州省,江西省,湖北省 |
小孔忍冬桑黄S. lonicericola | 陕西省,河南省 |
表1 桑黄种类和分布
Table 1 Species and distribution of Sanghuang
物种 Species | 主要分布地区 Main distribution area |
---|---|
桑树桑黄S. sanghuang | 吉林省,四川省,湖南省,云南省,浙江省 |
杨树桑黄S. vaninii | 黑龙江省,辽宁省,吉林省,浙江省 |
暴马桑黄S. baumii | 黑龙江省,辽宁省,吉林省,山东省,河北省,山西省 |
高山桑黄S. alpinus | 西藏自治区,湖北省 |
锦带花桑黄S. weigelae | 贵州省,江西省,湖北省 |
小孔忍冬桑黄S. lonicericola | 陕西省,河南省 |
[1] | 吴声华, 黄冠中, 陈愉萍, 等. 桑黄的分类及开发前景[J]. 菌物研究, 2016, 14(4): 187-200, 185. |
Wu SH, Huang GZ, Chen YP, et al. Taxonomy and development prospects of Sanghuang(Sanghuangporus sanghuang)[J]. J Fungal Res, 2016, 14(4): 187-200, 185. | |
[2] | 昝立峰, 包海鹰, 李丹花. “桑黄”类真菌中多酚物质及其生物活性研究进展[J]. 天然产物研究与开发, 2016, 28(1): 147-155. |
Zan LF, Bao HY, Li DH. Review on polyphenol components from medicinal fungi “Sanghuang” and their biological activity[J]. Nat Prod Res Dev, 2016, 28(1): 147-155. | |
[3] | 陈万超, 杨焱, 张劲松, 等. 桑黄类真菌活性代谢产物的研究进展[J]. 食用菌学报, 2020, 27(4): 188-201. |
Chen WC, Yang Y, Zhang JS, et al. Recent advances in bioactive metabolites from ‘Sanghuang’ mushrooms[J]. Acta Edulis Fungi, 2020, 27(4): 188-201. | |
[4] | 张洋洋, 吕国英, 方立林, 等. 桑黄主要活性物质的提取方法及药理活性研究进展[J]. 食药用菌, 2021, 29(5): 404-408. |
Zhang YY, Lv GY, Fang LL, et al. Research progress on extraction methods and pharmacological activities of main active substances from Sanghuangporus spp.[J]. Edible Med Mushrooms, 2021, 29(5): 404-408. | |
[5] | Gao H, Yin CM, Li C, et al. Phenolic profile, antioxidation and anti-proliferation activity of phenolic-rich extracts from Sanghuangporus vaninii[J]. Curr Res Food Sci, 2023, 6: 100519. |
[6] | 崔诗遥. 桑黄多酚类化合物的成分鉴定及其抗肿瘤作用机制研究[D]. 杭州: 浙江大学, 2022. |
Cui SY. Research of the constituent characterization of Phellinus baumii polyphenols and its antitumor mechanism[D]. Hangzhou: Zhejiang University, 2022. | |
[7] | Zhang MD, Xie Y, Su X, et al. Inonotus sanghuang polyphenols attenuate inflammatory response via modulating the crosstalk between macrophages and adipocytes[J]. Front Immunol, 2019, 10: 286. |
[8] | 张超, 汪雯翰, 杨焱, 等. 鲍姆桑黄孔菌化合物对HepG2细胞葡萄糖消耗的影响及其作用机制的研究[J]. 菌物学报, 2016, 35(7): 857-864. |
Zhang C, Wang WH, Yang Y, et al. Compounds of Sanghuangporus baumii and their affecting mechanism of glucose consumption in insulin-resistant HepG2 cells[J]. Mycosystema, 2016, 35(7): 857-864. | |
[9] | 赵克芳, 肖阳, 邢东旭, 等. 桑黄游离酚提取物体外降尿酸活性研究[J]. 食品与发酵工业, 2024, 50(10): 119-126. |
Zhao KF, Xiao Y, Xing DX, et al. Study on uric acid-lowering activity of Sanghuangporus sanghuang[J]. Food and Fermentation Industries, 2024, 50(10): 119-126. | |
[10] | 吴声华, 戴玉成. 药用真菌桑黄的种类解析[J]. 菌物学报, 2020, 39(5): 781-794. |
Wu SH, Dai YC. Species clarification of the medicinal fungus Sanghuang[J]. Mycosystema, 2020, 39(5): 781-794. | |
[11] | 万茜淋, 吴新民, 杨雪, 等. 桑黄孔菌属的化学成分及药理作用研究进展[J]. 菌物研究, 2022, 20(1): 65-71. |
Wan XL, Wu XM, Yang X, et al. Research progress on chemical constituents and pharmacological activity of Sanghuangporus[J]. Journal of Fungal Research, 2022, 20(1): 65-71. | |
[12] | 杨焱, 陈晓华, 戴玉成, 等. 我国桑黄产业发展现状、问题及展望: 桑黄产业发展千岛湖宣言[J]. 菌物学报, 2023, 42(4): 855-873. |
Yang Y, Chen XH, Dai YC, et al. Sanghuang industry in China: current status, challenges and perspectives: the Qiandao Lake declaration for Sanghuang industry development[J]. Mycosystema, 2023, 42(4): 855-873. | |
[13] | 张洋洋, 张作法, 宋婷婷, 等. 瓦尼桑黄多酚类化合物纯化及抗氧化活性[J]. 菌物学报, 2023, 42(4): 973-983. |
Zhang YY, Zhang ZF, Song TT, et al. Purification and antioxidant activities of polyphenolic compounds from Sanghuangporus vaninii[J]. Mycosystema, 2023, 42(4): 973-983. | |
[14] | 崔宝凯, 戴玉成, 杨宏. 药用真菌粗毛纤孔菌概述[J]. 中国食用菌, 2009, 28(4): 6-7. |
Cui BK, Dai YC, Yang H. Notes on the medicinal fungus of Inonotus hispidus[J]. Edible Fungi China, 2009, 28(4): 6-7. | |
[15] | Hsieh PW, Wu JB, Wu YC. Chemistry and biology of Phellinus linteus[J]. BioMedicine, 2013, 3(3): 106-113. |
[16] | 包海鹰, 杨烁, 李庆杰, 等. “桑黄” 的本草补充考证[J]. 菌物研究, 2017, 15(4): 264-270. |
Bao HY, Yang S, Li QJ, et al. Supplementary textual research on “Sanghuang”[J]. J Fungal Res, 2017, 15(4): 264-270. | |
[17] | 刘春静, 戴玉成. 中国锈革孔菌科一新记录种——忍冬木层孔菌[J]. 林业科学研究, 2002, 15(4): 413-415. |
Liu CJ, Dai YC. A new polypore in China- Phellinus lonicericola[J]. For Res, 2002, 15(4): 413-415. | |
[18] | 王超儀. “桑黄”的生药学鉴定及抗肿瘤活性的对比研究[D]. 长春: 吉林农业大学, 2013. |
Wang CY. Study on pharmacognosy and anti-tumor effect of “Sanghuang”[D]. Changchun: Jilin Agricultural University, 2013. | |
[19] | 胡真臻. 我国热区木层孔菌属所致几种林木根腐及茎腐病的病原菌鉴定[D]. 海口: 海南大学, 2020. |
Hu ZZ. Identification of the pathogens of several forest trees root rot and stem rot caused by Phellinus[D]. Haikou: Hainan University, 2020. | |
[20] | 戴玉成. 一种新的药用真菌——瓦尼木层孔菌(杨黄)[J]. 中国食用菌, 2003, 22(5): 7-8. |
Dai YC. A new medicinal fungus-Phellinus vaninii[J]. Edible Fungi China, 2003, 22(5): 7-8. | |
[21] | 邵蕴和, 陆琦, 李晓敏, 等. 粗毛纤孔菌的营养及活性成分分析[J]. 微生物学通报, 2024, 51(9): 3614-3628. |
Sao YH, Lu Q, Li XM, et al. Nutritional value and active components of Inonotus hispidus[J]. Microbiology China, 2024, 51(9): 3614-3628. | |
[22] | 昝立峰. 粗毛纤孔菌与椭圆嗜蓝孢孔菌子实体的化学成分及其药理活性研究[D]. 长春: 吉林农业大学, 2013. |
Zan LF. Studies on the chemical constituents and pharmacological activities of Inonotus hispidus and Fomitiporia ellipsoidea[D]. Changchun: Jilin Agricultural University, 2013. | |
[23] | 潘学仁, 邹利, 户岩岩, 等. 东亚地区“桑黄” 物种问题讨论[J]. 中国食用菌, 2008, 27(1): 63-64, 67. |
Pan XR, Zou L, Hu YY, et al. Discussion on the issue of "Sanghuang" species in East Asia[J]. Edible Fungi China, 2008, 27(1): 63-64, 67. | |
[24] | 张莹璐, 夏伯阳, 陈天娇, 等. 不同种桑黄子实体醇提物化学组成及抗氧化活性比较[J]. 菌物学报, 2024, 43(4): 72-83. |
Zhang YL, Xia BY, Chen TJ, et al. A comparison of chemical compositions and antioxidant activities of ethanol extracts from basidiomata between different Sanghuang species[J]. Mycosystema, 2024, 43(4): 72-83. | |
[25] | 闫帅帅, 郭辛茹, 徐建国, 等. 桑黄裂蹄针层孔菌提取物生物活性成分及功能特性分析[J]. 食品研究与开发, 2023, 44(23): 22-28. |
Yan SS, Guo XR, Xu JG, et al. Analysis of bioactive components and functional properties of extract from Phellinus linteus[J]. Food Res Dev, 2023, 44(23): 22-28. | |
[26] | Peng SJ, Hou YN, Chen ZH. Hispolon alleviates oxidative damage by stimulating the Nrf2 signaling pathway in PC12 cells[J]. Arch Biochem Biophys, 2022, 727: 109303. |
[27] | Zhang JJ, Chen BS, Dai HQ, et al. Sesquiterpenes and polyphenols with glucose-uptake stimulatory and antioxidant activities from the medicinal mushroom Sanghuangporus sanghuang[J]. Chin J Nat Med, 2021, 19(9): 693-699. |
[28] | Zan LF, Xin JC, Zhi JH, et al. Qualitative analysis using UPLC-Q-TOF/MS and a systematic network pharmacology-based strategy to investigate the active constituents and potential mechanisms against breast cancer in the fruit body of Sanghuangporus vaninii[J]. Nat Prod Commun, 2024, 19(5): 1-16. |
[29] | Liu X, Cui SY, Li WL, et al. Elucidation of the anti-colon cancer mechanism of Phellinus baumii polyphenol by an integrative approach of network pharmacology and experimental verification[J]. Int J Biol Macromol, 2023, 253(Pt 6): 127429. |
[30] | Liu X, Cui SY, Dan CY, et al. Phellinus baumii polyphenol: a potential therapeutic candidate against lung cancer cells[J]. International Journal of Molecular Sciences, 2022, 23(24): 16141. |
[31] | 昝立峰, 郭海燕, 包海鹰, 等. 鲍姆桑黄子实体提取物的体外细胞毒活性及其化学成分分析[J]. 菌物学报, 2023, 42(4): 961-972. |
Zan LF, Guo HY, Bao HY, et al. Characterization of cytotoxicity and chemical constituents of extracts of Sanghuangporus baumii basidiomata[J]. Mycosystema, 2023, 42(4): 961-972. | |
[32] | Lee MS, Hwang BS, Lee IK, et al. Chemical constituents of the culture broth of Phellinus linteus and their antioxidant activity[J]. Mycobiology, 2015, 43(1): 43-48. |
[33] | 丁云云, 刘锋, 施超, 等. 桑黄化学成分及体外抗肿瘤活性研究[J]. 中国中药杂志, 2016, 41(16): 3042-3048. |
Ding YY, Liu F, Shi C, et al. Chemical constituents from Phellinus igniarius and their anti-tumor activity in vitro[J]. China J Chin Mater Med, 2016, 41(16): 3042-3048. | |
[34] | Lee IK, Yun BS. Highly oxygenated and unsaturated metabolites providing a diversity of hispidin class antioxidants in the medicinal mushrooms Inonotus and Phellinus[J]. Bioorg Med Chem, 2007, 15(10): 3309-3314. |
[35] | Lee IK, Han MS, Lee MS, et al. Styrylpyrones from the medicinal fungus Phellinus baumii and their antioxidant properties[J]. Bioorg Med Chem Lett, 2010, 20(18): 5459-5461. |
[36] | Ye LB, Zheng HJ, Zhang Z, et al. Preparative isolation of 5 antioxidant constituents from the medicinal mushroom Phellinus baumii(Agaricomycetes)by high-speed countercurrent chromatography and preparative high-performance liquid chromatography[J]. Int J Med Mushrooms, 2017, 19(4): 319-326. |
[37] | Chen W, Feng LN, Huang ZY, et al. Hispidin produced from Phellinus linteus protects against peroxynitrite-mediated DNA damage and hydroxyl radical generation[J]. Chem Biol Interact, 2012, 199(3): 137-142. |
[38] | Huang SY, Chang SF, Chau SF, et al. The protective effect of hispidin against hydrogen peroxide-induced oxidative stress in ARPE-19 cells via Nrf2 signaling pathway[J]. Biomolecules, 2019, 9(8): 380. |
[39] | Kim DE, Kim B, Shin HS, et al. The protective effect of hispidin against hydrogen peroxide-induced apoptosis in H9c2 cardiomyoblast cells through Akt/GSK-3β and ERK1/2 signaling pathway[J]. Exp Cell Res, 2014, 327(2): 264-275. |
[40] | Lv LX, Zhou ZX, Zhou Z, et al. Hispidin induces autophagic and necrotic death in SGC-7901 gastric cancer cells through lysosomal membrane permeabilization by inhibiting tubulin polymerization[J]. Oncotarget, 2017, 8(16): 26992-27006. |
[41] | Lee JH, Lee JS, Kim YR, et al. Hispidin isolated from Phellinus linteus protects against hydrogen peroxide-induced oxidative stress in pancreatic MIN6N β-cells[J]. J Med Food, 2011, 14(11): 1431-1438. |
[42] | Lee EK, Koh EM, Kim YN, et al. Immunomodulatory effect of hispolon on LPS-induced RAW264.7 cells and mitogen/alloantigen-stimulated spleen lymphocytes of mice[J]. Pharmaceutics, 2022, 14(7): 1423. |
[43] | Kim JE, Takanche JS, Yun BS, et al. Anti-inflammatory character of Phelligridin D modulates periodontal regeneration in lipopolysaccharide-induced human periodontal ligament cells[J]. J Periodontal Res, 2018, 53(5): 816-824. |
[44] | Wu MS, Chien CC, Cheng KT, et al. Hispolon suppresses LPS- or LTA-induced iNOS/NO production and apoptosis in BV-2 microglial cells[J]. Am J Chin Med, 2017, 45(8): 1649-1666. |
[45] | Jin MH, Chen DQ, Jin YH, et al. Hispidin inhibits LPS-induced nitric oxide production in BV-2 microglial cells via ROS-dependent MAPK signaling[J]. Exp Ther Med, 2021, 22(3): 970. |
[46] | Chao W, Deng JS, Huang SS, et al. 3, 4-dihydroxybenzalacetone attenuates lipopolysaccharide-induced inflammation in acute lung injury via down-regulation of MMP-2 and MMP-9 activities through suppressing ROS-mediated MAPK and PI3K/AKT signaling pathways[J]. Int Immunopharmacol, 2017, 50: 77-86. |
[47] | Huang CY, Deng JS, Huang WC, et al. Attenuation of lipopolysaccharide-induced acute lung injury by hispolon in mice, through regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 pathways, and suppressing oxidative stress-mediated ER stress-induced apoptosis and autophagy[J]. Nutrients, 2020, 12(6): 1742. |
[48] | Su X, Liu K, Xie Y, et al. Protective effect of a polyphenols-rich extract from Inonotus Sanghuang on bleomycin-induced acute lung injury in mice[J]. Life Sci, 2019, 230: 208-217. |
[49] | Hsieh YC, Dai YC, Cheng KT, et al. Blockade of the SRC/STAT3/BCL-2 signaling axis sustains the cytotoxicity in human colorectal cancer cell lines induced by dehydroxyhispolon methyl ether[J]. Biomedicines, 2023, 11(9): 2530. |
[50] | Kim JH, Kim YC, Park B. Hispolon from Phellinus linteus induces apoptosis and sensitizes human cancer cells to the tumor necrosis factor-related apoptosis-inducing ligand through upregulation of death receptors[J]. Oncol Rep, 2016, 35(2): 1020-1026. |
[51] | Masood M, Rasul A, Sarfraz I, et al. Hispolon induces apoptosis against prostate DU145 cancer cells via modulation of mitochondrial and STAT3 pathways[J]. Pak J Pharm Sci, 2019, 32:5(Supplementary): 2237-2243. |
[52] | Pangjantuk A, Chueaphromsri P, Kunhorm P, et al. Hispolon, A bioactive compound from Phellinus linteus, induces apoptosis of human breast cancer cells through the modulation of oxidative stress and autophagy[J]. J Biol Act Prod Nat, 2023, 13(1): 1-11. |
[53] | Qiu P, Liu JQ, Zhao LS, et al. Inoscavin A, a pyrone compound isolated from a Sanghuangporus vaninii extract, inhibits colon cancer cell growth and induces cell apoptosis via the hedgehog signaling pathway[J]. Phytomedicine, 2022, 96: 153852. |
[54] | Chen FH, Gong MC, Weng DC, et al. Phellinus linteus activates Treg cells via FAK to promote M2 macrophage polarization in hepatocellular carcinoma[J]. Cancer Immunol Immunother, 2024, 73(1): 18. |
[55] | Yang Y, He PY, Hou YH, et al. Osmundacetone modulates mitochondrial metabolism in non-small cell lung cancer cells by hijacking the glutamine/glutamate/α-KG metabolic axis[J]. Phytomedicine, 2022, 100: 154075. |
[56] | Lee WH, Chen LC, Lee CJ, et al. DNA primase polypeptide 1(PRIM1)involves in estrogen-induced breast cancer formation through activation of the G2/M cell cycle checkpoint[J]. Int J Cancer, 2019, 144(3): 615-630. |
[57] | Liao KF, Chiu TL, Chang SF, et al. Hispolon induces apoptosis, suppresses migration and invasion of glioblastoma cells and inhibits GBM xenograft tumor growth in vivo[J]. Molecules, 2021, 26(15): 4497. |
[58] | Hong DR, Park MJ, Jang EH, et al. Hispolon as an inhibitor of TGF-β-induced epithelial-mesenchymal transition in human epithelial cancer cells by co-regulation of TGF-β-Snail/Twist axis[J]. Oncol Lett, 2017, 14(4): 4866-4872. |
[59] | Hsin MC, Hsieh YH, Wang PH, et al. Hispolon suppresses metastasis via autophagic degradation of cathepsin S in cervical cancer cells[J]. Cell Death Dis, 2017, 8(10): e3089. |
[60] | Chao W, Deng JS, Li PY, et al. 3, 4-dihydroxybenzalactone suppresses human non-small cell lung carcinoma cells metastasis via suppression of epithelial to mesenchymal transition, ROS-mediated PI3K/AKT/MAPK/MMP and NFκB signaling pathways[J]. Molecules, 2017, 22(4): 537. |
[61] | 郑美瑜, 王璐, 刘哲, 等. 桑黄中抑制α-葡萄糖苷酶活性成分提取及其化学成分鉴定[J]. 浙江农业学报, 2022, 34(5): 949-958. |
Zheng MY, Wang L, Liu Z, et al. Extraction and identification of α-glucosidase-inhibitory components from Phellinus baumii[J]. Acta Agric Zhejiangensis, 2022, 34(5): 949-958. | |
[62] | Lee YS, Kang IJ, Won MH, et al. Inhibition of protein tyrosine phosphatase 1beta by hispidin derivatives isolated from the fruiting body of Phellinus linteus[J]. Nat Prod Commun, 2010, 5(12): 1927-1930. |
[63] | Zheng SJ, Deng SH, Huang Y, et al. Anti-diabetic activity of a polyphenol-rich extract from Phellinus igniarius in KK-Ay mice with spontaneous type 2 diabetes mellitus[J]. Food Funct, 2018, 9(1): 614-623. |
[64] | Song TY, Yang NC, Chen CL, et al. Protective effects and possible mechanisms of ergothioneine and hispidin against methylglyoxal-induced injuries in rat pheochromocytoma cells[J]. Oxid Med Cell Longev, 2017, 2017: 4824371. |
[65] | Suabjakyong P, Saiki R, Van Griensven LJLD, et al. Polyphenol extract from Phellinus igniarius protects against acrolein toxicity in vitro and provides protection in a mouse stroke model[J]. PLoS One, 2015, 10(3): e0122733. |
[66] | Li HX, Zhang XY, Gu LL, et al. Anti-gout effects of the medicinal fungus Phellinus igniarius in hyperuricaemia and acute gouty arthritis rat models[J]. Front Pharmacol, 2022, 12: 801910. |
[67] | Chen DM, Jiang CL, Lu H. Study on the mechanism of Phellinus igniarius total flavonoids in reducing uric acid and protecting uric acid renal injury in vitro[J]. Heliyon, 2023, 9(1): e12979. |
[68] | Chepkirui C, Cheng T, Matasyoh J, et al. An unprecedented spiro[furan-2, 1'-indene]-3-one derivative and other nematicidal and antimicrobial metabolites from Sanghuangporus sp.(Hymenochaetaceae, Basidiomycota)collected in Kenya[J]. Phytochem Lett, 2018, 25: 141-146. |
[69] | Hwang BS, Lee IK, Choi HJ, et al. Anti-influenza activities of polyphenols from the medicinal mushroom Phellinus baumii[J]. Bioorg Med Chem Lett, 2015, 25(16): 3256-3260. |
[70] | Kim JY, Kim DW, Hwang BS, et al. Neuraminidase inhibitors from the fruiting body of Phellinus igniarius[J]. Mycobiology, 2016, 44(2): 117-120. |
[71] | Song JL, Wang ZW, Chi Y, et al. Anti-gout activity and the interaction mechanisms between Sanghuangporus vaninii active components and xanthine oxidase[J]. Bioorg Chem, 2023, 133: 106394. |
[72] | Yi YJ, Lee IK, Lee SM, et al. An antioxidant davallialactone from Phellinus baumii enhances sperm penetration on in vitro fertilization of pigs[J]. Mycobiology, 2016, 44(1): 54-57. |
[1] | 蔡楠, 方静平, 陈必链, 何勇锦. 高值化等鞭金藻固碳研究进展[J]. 生物技术通报, 2024, 40(6): 68-80. |
[2] | 王楠, 廖永琴, 施竹凤, 申云鑫, 杨童雨, 冯路遥, 矣小鹏, 唐加菜, 陈齐斌, 杨佩文. 三株无量山森林土壤芽孢杆菌鉴定及其生物活性挖掘[J]. 生物技术通报, 2024, 40(2): 277-288. |
[3] | 康晓博, 张璟汐, 卢甜甜, 刘亚月, 周龙建, 张翼. 不同盐度培养下海洋真菌Aspergillus unguis DLEP2008001生物活性及次生代谢组变化[J]. 生物技术通报, 2024, 40(11): 296-311. |
[4] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[5] | 汪巧菊, 胡雨萌, 温亚亚, 宋丽, 孟闯, 潘志明, 焦新安. 新型冠状病毒S1蛋白的表达及活性鉴定[J]. 生物技术通报, 2022, 38(3): 157-163. |
[6] | 王楠, 苏誉, 刘文杰, 封明, 毛瑜, 张新国. 植物内生菌中抗耐药微生物活性成分的研究进展[J]. 生物技术通报, 2021, 37(8): 263-274. |
[7] | 薛帆正, 黄海辰, 吴福泉, 李晓敏, 吴小平, 傅俊生. 真菌黑色素研究现状与产业应用[J]. 生物技术通报, 2021, 37(11): 32-41. |
[8] | 徐重新, 张存政, 刘媛, 张霄, 仲建锋, 刘贤金. 食源性致病微生物危害风险及其防控用抗菌生物活性肽研究进展[J]. 生物技术通报, 2019, 35(7): 202-212. |
[9] | 赵祥杰, 杨文君, 杨荣玲, 吴婷婷, 王朝宇, 许宁宁, 何佳美. 花色苷生物转化修饰的研究进展[J]. 生物技术通报, 2019, 35(10): 205-211. |
[10] | 瞿佳, 赵玲侠, 陈锐, 路鹏鹏, 孙晓宇, 沈卫荣. 抗结核海洋放线菌的筛选及菌株HY286生物活性研究[J]. 生物技术通报, 2017, 33(11): 194-199. |
[11] | 陈龙, 梁子宁, 朱华. 植物内生菌研究进展[J]. 生物技术通报, 2015, 31(8): 30-34. |
[12] | 许蕙金兰,王翠翠,傅达奇. 甾族糖苷生物碱研究进展[J]. 生物技术通报, 2015, 31(10): 24-30. |
[13] | 何宝楠,李海涛,刘荣梅,王博,高继国. 苏云金芽胞杆菌V4菌株cry杀虫基因的鉴定、表达及杀虫活性分析[J]. 生物技术通报, 2014, 30(9): 125-130. |
[14] | 宋恺, 胡洁, 林文翰, 季宇彬. 海绵共附生真菌多样性及其次级代谢产物的研究进展[J]. 生物技术通报, 2014, 30(4): 36-42. |
[15] | 崔浩然, 郎志宏, 朱莉, 汪海, 黄大昉. 微生物蛋白与转基因作物蛋白等同性比较[J]. 生物技术通报, 2013, 29(9): 13-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||