生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 240-254.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0753
• 研究报告 • 上一篇
李斌1,2(), 苏香萍1,3, 刘畅1, 王玉兵1, 张勇洪4, 周超1(
), 徐青2(
)
收稿日期:
2024-08-06
出版日期:
2025-03-26
发布日期:
2025-03-20
通讯作者:
徐青,女,讲师,研究方向 :植物生物信息学;E-mail: xuq@ctgu.edu.cn作者简介:
李斌,男,硕士研究生,研究方向 :植物生物信息学;E-mail: bli@ctgu.edu.cn
基金资助:
LI Bin1,2(), SU Xiang-ping1,3, LIU Chang1, WANG Yu-bing1, ZHANG Yong-hong4, ZHOU Chao1(
), XU Qing2(
)
Received:
2024-08-06
Published:
2025-03-26
Online:
2025-03-20
摘要:
目的 探究玄参科(Scrophulariaceae)叶绿体基因组(chloroplast DNA, cpDNA)的特征及其系统发育关系。 方法 对湖北玄参进行DNA测序,通过组装与注释获得了其叶绿体基因组序列,并从GenBank下载46条玄参科植物叶绿体基因组序列进行比较分析。 结果 玄参科叶绿体基因组长度在142 336-154 710 bp,GC含量为37.7%-38.1%,展现出典型的四分体结构,其中大单拷贝区长度为83 531-97 103 bp,小单拷贝区为17 375-18 600 bp,反向重复区为13 497-25 695 bp。通过对玄参科叶绿体基因组成的比较,揭示了在进化过程中获得与丢失的模式。此外,共线性分析发现,玄参科叶绿体基因组排列较为保守,但也存在基因组重排事件。长重复序列分析结果显示,玄参科叶绿体基因组大多数是正向重复和回文重复;而简单重复序列分析则鉴定了117-156个SSR位点,其中以A/T组成的单核苷酸重复次数最多,占比高达85.50%-91.50%。通过相对同义密码子使用度(RSCU)分析,筛选出25个最优密码子,绝大部分以A/U结尾。分化时间分析表明,玄参科的共同祖先与近缘物种大约在70.5百万年前(MYA)分开,并在约52.4 MYA形成了一个单系分支,绝大多数玄参科物种出现在近50 MYA。 结论 玄参科叶绿体基因组虽具有相似的结构特征,但在其进化历程中,基因的获得与丢失以及基因组的重排现象亦有所发生。基于叶绿体基因组,构建了更为精细的玄参科系统发育树。此外,分化时间的研究表明,玄参科物种的快速分化主要发生在大约50百万年前。
李斌, 苏香萍, 刘畅, 王玉兵, 张勇洪, 周超, 徐青. 玄参科植物叶绿体基因组特征及系统发育分析[J]. 生物技术通报, 2025, 41(3): 240-254.
LI Bin, SU Xiang-ping, LIU Chang, WANG Yu-bing, ZHANG Yong-hong, ZHOU Chao, XU Qing. Chloroplast Genome Characteristics and Phylogenetic Analysis of Scrophulariaceae[J]. Biotechnology Bulletin, 2025, 41(3): 240-254.
属名 Genus | 物种名 Organism | 登录号 Accession | GC含量 GC/% | Size/bp | 基因数量 Gene number | 参考文献 Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | LSC | IR | SSC | Total | PCGs | rRNA | tRNA | |||||
Bontia | B. daphnoides | NC_050952.1 | 37.8 | 153 946 | 85 008 | 25 169 | 18 600 | 113 | 80 | 4 | 29 | [ |
Buddleja | B. alternifolia | MN395662.1 | 38.0 | 154 357 | 85 405 | 25 441 | 18 070 | 114 | 80 | 4 | 30 | [ |
B. alternifolia | NC_057238.1 | 38.0 | 154 280 | 85 330 | 25 440 | 18 070 | 115 | 80 | 4 | 31 | [ | |
B. colvilei | MH411148.1 | 38.1 | 154 228 | 85 203 | 25 553 | 17 919 | 114 | 80 | 4 | 30 | [ | |
B. colvilei | NC_042766.1 | 38.1 | 154 225 | 85 200 | 25 553 | 17 919 | 114 | 80 | 4 | 30 | [ | |
B. globosa | NC_068052.1 | 38.1 | 154 034 | 84 909 | 25 524 | 18 077 | 114 | 80 | 4 | 30 | [ | |
B. sessilifolia | MH411150.1 | 38.1 | 154 204 | 85 181 | 25 559 | 17 905 | 114 | 80 | 4 | 30 | [ | |
B. sessilifolia | MH411151.1 | 38.1 | 154 710 | 85 687 | 25 559 | 17 905 | 114 | 80 | 4 | 30 | [ | |
B. sessilifolia | NC_042767.1 | 38.1 | 154 202 | 85 179 | 25 559 | 17 905 | 114 | 80 | 4 | 30 | [ | |
Diocirea | D. violacea | NC_050957.1 | 37.8 | 151 900 | 87 779 | 22 936 | 18 250 | 112 | 80 | 4 | 28 | [ |
Eremophila | E. cuneifolia | NC_068053.1 | 37.8 | 151 927 | 87 819 | 22 925 | 18 258 | 114 | 80 | 4 | 30 | [ |
E. gibbifolia | NC_050954.1 | 37.9 | 148 717 | 90 431 | 20 147 | 17 992 | 112 | 80 | 4 | 28 | [ | |
E. lanceolata | NC_068054.1 | 37.9 | 151 565 | 87 680 | 22 812 | 18 261 | 114 | 80 | 4 | 30 | [ | |
E. latrobei subsp. filiformis | OL977700.1 | 37.9 | 151 550 | 87 692 | 22 798 | 18 262 | 114 | 80 | 4 | 30 | [ | |
E. longifolia | NC_068055.1 | 37.9 | 151 629 | 87 699 | 22 832 | 18 266 | 114 | 80 | 4 | 30 | [ | |
E. maculata subsp. brevifolia | OL977702.1 | 37.8 | 142 336 | 97 103 | 13 497 | 18 239 | 114 | 80 | 4 | 30 | [ | |
E. magnifica subsp. magnifica | OL977703.1 | 37.8 | 151 922 | 87 933 | 22 971 | 18 047 | 114 | 80 | 4 | 30 | [ | |
E. magnifica subsp. velutina | OL977704.1 | 37.8 | 151 919 | 87 929 | 22 971 | 18 048 | 114 | 80 | 4 | 30 | [ | |
E. oppositifolia | NC_050958.1 | 37.9 | 151 715 | 87 798 | 22 834 | 18 277 | 112 | 80 | 4 | 28 | [ | |
E. pilosa | NC_068056.1 | 37.9 | 151 541 | 87 684 | 22 798 | 18 261 | 114 | 80 | 4 | 30 | [ | |
E. platycalyx subsp. pardalota | OL977706.1 | 37.7 | 151 947 | 87 902 | 22 966 | 18 113 | 114 | 80 | 4 | 30 | [ | |
E. pusilliflora | NC_068057.1 | 37.9 | 151 725 | 87 845 | 22 803 | 18 274 | 114 | 80 | 4 | 30 | [ | |
E. spongiocarpa | NC_068058.1 | 37.9 | 151 678 | 87 760 | 22 820 | 18 278 | 114 | 80 | 4 | 30 | [ | |
Leucophyllum | L. frutescens | NC_050953.1 | 37.8 | 154 253 | 85 003 | 25 551 | 18 148 | 113 | 80 | 4 | 29 | [ |
Mimulicalyx | M. rosulatus | NC_068044.1 | 38.1 | 153 580 | 84 572 | 25 695 | 17 618 | 114 | 80 | 4 | 30 | [ |
M. rosulatus | OL977687.1 | 38.1 | 153 587 | 84 580 | 25 695 | 17 617 | 114 | 80 | 4 | 30 | [ | |
Myoporum | M. bontioides | NC_050956.1 | 37.9 | 151 742 | 87 680 | 23 026 | 18 010 | 112 | 80 | 4 | 28 | [ |
M. laetum | NC_050955.1 | 37.9 | 151 725 | 87 724 | 22 997 | 18 007 | 112 | 80 | 4 | 28 | [ | |
Scrophularia | S. buergeriana | NC_031437.1 | 38.0 | 153 631 | 84 454 | 25 624 | 17 929 | 114 | 80 | 4 | 30 | [ |
S. dentata | KT428154.1 | 38.0 | 152 553 | 84 058 | 25 523 | 17 449 | 114 | 80 | 4 | 30 | [ | |
S. dentata | OP018677.1 | 38.0 | 152 509 | 84 070 | 25 532 | 17 375 | 114 | 80 | 4 | 30 | [ | |
S. incisa | NC_081995.1 | 38.0 | 152 481 | 83 944 | 25 535 | 17 467 | 114 | 80 | 4 | 30 | [ | |
S. incisa | OP036429.1 | 38.0 | 152 600 | 84 067 | 25 534 | 17 465 | 113 | 80 | 4 | 29 | [ | |
S. integrifolia | NC_081997.1 | 38.0 | 152 088 | 83 588 | 25 512 | 17 476 | 114 | 80 | 4 | 30 | [ | |
S. kiriloviana | NC_081996.1 | 38.0 | 152 554 | 84 008 | 25 512 | 17 522 | 115 | 80 | 4 | 31 | [ | |
S. kiriloviana | OP036427.1 | 38.0 | 152 365 | 83 891 | 25 500 | 17 474 | 114 | 80 | 4 | 30 | [ | |
S. kiriloviana | OP036428.1 | 38.0 | 152 528 | 83 857 | 25 610 | 17 454 | 114 | 80 | 4 | 30 | [ | |
S. ningpoensis | NC_053823.1 | 38.0 | 153 175 | 84 257 | 25 490 | 17 938 | 114 | 80 | 4 | 30 | [ | |
S. ningpoensis | OR664113.1 | 38.0 | 153 175 | 84 257 | 25 490 | 17 938 | 114 | 80 | 4 | 30 | - | |
S. ningpoensis | OR664114.1 | 38.0 | 153 175 | 84 257 | 25 490 | 17 938 | 114 | 80 | 4 | 30 | - | |
S. takesimensis | KP718628.1 | 38.0 | 152 436 | 83 542 | 25 478 | 17 938 | 114 | 80 | 4 | 30 | [ | |
S. takesimensis | NC_026202.1 | 38.1 | 152 425 | 83 531 | 25 478 | 17 938 | 113 | 80 | 4 | 29 | [ | |
Verbascum | V. blattaria | NC_085504.1 | 38.0 | 153 014 | 84 263 | 25 440 | 17 871 | 114 | 80 | 4 | 30 | [ |
V. chaixii | NC_085505.1 | 38.0 | 153 495 | 84 779 | 25 436 | 17 844 | 114 | 80 | 4 | 30 | [ | |
V. chinense | NC_051533.1 | 38.0 | 153 618 | 84 834 | 25 482 | 17 828 | 114 | 80 | 4 | 30 | [ | |
V. phoeniceum | NC_050920.1 | 38.0 | 153 348 | 84 601 | 25 430 | 17 887 | 114 | 80 | 4 | 30 | [ | |
V. phoeniceum | ON121986.1 | 38.0 | 153 273 | 84 571 | 25 426 | 17 850 | 114 | 80 | 4 | 30 | [ | |
V. songaricum | NC_085506.1 | 38.0 | 153 291 | 84 534 | 25 459 | 17 839 | 114 | 80 | 4 | 30 | [ |
表1 玄参科叶绿体基因组基本特征
Table 1 Basic characteristics of Scrophulariaceae chloroplast genomes
属名 Genus | 物种名 Organism | 登录号 Accession | GC含量 GC/% | Size/bp | 基因数量 Gene number | 参考文献 Reference | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | LSC | IR | SSC | Total | PCGs | rRNA | tRNA | |||||
Bontia | B. daphnoides | NC_050952.1 | 37.8 | 153 946 | 85 008 | 25 169 | 18 600 | 113 | 80 | 4 | 29 | [ |
Buddleja | B. alternifolia | MN395662.1 | 38.0 | 154 357 | 85 405 | 25 441 | 18 070 | 114 | 80 | 4 | 30 | [ |
B. alternifolia | NC_057238.1 | 38.0 | 154 280 | 85 330 | 25 440 | 18 070 | 115 | 80 | 4 | 31 | [ | |
B. colvilei | MH411148.1 | 38.1 | 154 228 | 85 203 | 25 553 | 17 919 | 114 | 80 | 4 | 30 | [ | |
B. colvilei | NC_042766.1 | 38.1 | 154 225 | 85 200 | 25 553 | 17 919 | 114 | 80 | 4 | 30 | [ | |
B. globosa | NC_068052.1 | 38.1 | 154 034 | 84 909 | 25 524 | 18 077 | 114 | 80 | 4 | 30 | [ | |
B. sessilifolia | MH411150.1 | 38.1 | 154 204 | 85 181 | 25 559 | 17 905 | 114 | 80 | 4 | 30 | [ | |
B. sessilifolia | MH411151.1 | 38.1 | 154 710 | 85 687 | 25 559 | 17 905 | 114 | 80 | 4 | 30 | [ | |
B. sessilifolia | NC_042767.1 | 38.1 | 154 202 | 85 179 | 25 559 | 17 905 | 114 | 80 | 4 | 30 | [ | |
Diocirea | D. violacea | NC_050957.1 | 37.8 | 151 900 | 87 779 | 22 936 | 18 250 | 112 | 80 | 4 | 28 | [ |
Eremophila | E. cuneifolia | NC_068053.1 | 37.8 | 151 927 | 87 819 | 22 925 | 18 258 | 114 | 80 | 4 | 30 | [ |
E. gibbifolia | NC_050954.1 | 37.9 | 148 717 | 90 431 | 20 147 | 17 992 | 112 | 80 | 4 | 28 | [ | |
E. lanceolata | NC_068054.1 | 37.9 | 151 565 | 87 680 | 22 812 | 18 261 | 114 | 80 | 4 | 30 | [ | |
E. latrobei subsp. filiformis | OL977700.1 | 37.9 | 151 550 | 87 692 | 22 798 | 18 262 | 114 | 80 | 4 | 30 | [ | |
E. longifolia | NC_068055.1 | 37.9 | 151 629 | 87 699 | 22 832 | 18 266 | 114 | 80 | 4 | 30 | [ | |
E. maculata subsp. brevifolia | OL977702.1 | 37.8 | 142 336 | 97 103 | 13 497 | 18 239 | 114 | 80 | 4 | 30 | [ | |
E. magnifica subsp. magnifica | OL977703.1 | 37.8 | 151 922 | 87 933 | 22 971 | 18 047 | 114 | 80 | 4 | 30 | [ | |
E. magnifica subsp. velutina | OL977704.1 | 37.8 | 151 919 | 87 929 | 22 971 | 18 048 | 114 | 80 | 4 | 30 | [ | |
E. oppositifolia | NC_050958.1 | 37.9 | 151 715 | 87 798 | 22 834 | 18 277 | 112 | 80 | 4 | 28 | [ | |
E. pilosa | NC_068056.1 | 37.9 | 151 541 | 87 684 | 22 798 | 18 261 | 114 | 80 | 4 | 30 | [ | |
E. platycalyx subsp. pardalota | OL977706.1 | 37.7 | 151 947 | 87 902 | 22 966 | 18 113 | 114 | 80 | 4 | 30 | [ | |
E. pusilliflora | NC_068057.1 | 37.9 | 151 725 | 87 845 | 22 803 | 18 274 | 114 | 80 | 4 | 30 | [ | |
E. spongiocarpa | NC_068058.1 | 37.9 | 151 678 | 87 760 | 22 820 | 18 278 | 114 | 80 | 4 | 30 | [ | |
Leucophyllum | L. frutescens | NC_050953.1 | 37.8 | 154 253 | 85 003 | 25 551 | 18 148 | 113 | 80 | 4 | 29 | [ |
Mimulicalyx | M. rosulatus | NC_068044.1 | 38.1 | 153 580 | 84 572 | 25 695 | 17 618 | 114 | 80 | 4 | 30 | [ |
M. rosulatus | OL977687.1 | 38.1 | 153 587 | 84 580 | 25 695 | 17 617 | 114 | 80 | 4 | 30 | [ | |
Myoporum | M. bontioides | NC_050956.1 | 37.9 | 151 742 | 87 680 | 23 026 | 18 010 | 112 | 80 | 4 | 28 | [ |
M. laetum | NC_050955.1 | 37.9 | 151 725 | 87 724 | 22 997 | 18 007 | 112 | 80 | 4 | 28 | [ | |
Scrophularia | S. buergeriana | NC_031437.1 | 38.0 | 153 631 | 84 454 | 25 624 | 17 929 | 114 | 80 | 4 | 30 | [ |
S. dentata | KT428154.1 | 38.0 | 152 553 | 84 058 | 25 523 | 17 449 | 114 | 80 | 4 | 30 | [ | |
S. dentata | OP018677.1 | 38.0 | 152 509 | 84 070 | 25 532 | 17 375 | 114 | 80 | 4 | 30 | [ | |
S. incisa | NC_081995.1 | 38.0 | 152 481 | 83 944 | 25 535 | 17 467 | 114 | 80 | 4 | 30 | [ | |
S. incisa | OP036429.1 | 38.0 | 152 600 | 84 067 | 25 534 | 17 465 | 113 | 80 | 4 | 29 | [ | |
S. integrifolia | NC_081997.1 | 38.0 | 152 088 | 83 588 | 25 512 | 17 476 | 114 | 80 | 4 | 30 | [ | |
S. kiriloviana | NC_081996.1 | 38.0 | 152 554 | 84 008 | 25 512 | 17 522 | 115 | 80 | 4 | 31 | [ | |
S. kiriloviana | OP036427.1 | 38.0 | 152 365 | 83 891 | 25 500 | 17 474 | 114 | 80 | 4 | 30 | [ | |
S. kiriloviana | OP036428.1 | 38.0 | 152 528 | 83 857 | 25 610 | 17 454 | 114 | 80 | 4 | 30 | [ | |
S. ningpoensis | NC_053823.1 | 38.0 | 153 175 | 84 257 | 25 490 | 17 938 | 114 | 80 | 4 | 30 | [ | |
S. ningpoensis | OR664113.1 | 38.0 | 153 175 | 84 257 | 25 490 | 17 938 | 114 | 80 | 4 | 30 | - | |
S. ningpoensis | OR664114.1 | 38.0 | 153 175 | 84 257 | 25 490 | 17 938 | 114 | 80 | 4 | 30 | - | |
S. takesimensis | KP718628.1 | 38.0 | 152 436 | 83 542 | 25 478 | 17 938 | 114 | 80 | 4 | 30 | [ | |
S. takesimensis | NC_026202.1 | 38.1 | 152 425 | 83 531 | 25 478 | 17 938 | 113 | 80 | 4 | 29 | [ | |
Verbascum | V. blattaria | NC_085504.1 | 38.0 | 153 014 | 84 263 | 25 440 | 17 871 | 114 | 80 | 4 | 30 | [ |
V. chaixii | NC_085505.1 | 38.0 | 153 495 | 84 779 | 25 436 | 17 844 | 114 | 80 | 4 | 30 | [ | |
V. chinense | NC_051533.1 | 38.0 | 153 618 | 84 834 | 25 482 | 17 828 | 114 | 80 | 4 | 30 | [ | |
V. phoeniceum | NC_050920.1 | 38.0 | 153 348 | 84 601 | 25 430 | 17 887 | 114 | 80 | 4 | 30 | [ | |
V. phoeniceum | ON121986.1 | 38.0 | 153 273 | 84 571 | 25 426 | 17 850 | 114 | 80 | 4 | 30 | [ | |
V. songaricum | NC_085506.1 | 38.0 | 153 291 | 84 534 | 25 459 | 17 839 | 114 | 80 | 4 | 30 | [ |
图1 玄参科物种系统发育分析A:基于叶绿体全基因组构建的玄参科系统发育树。82个共有PCGs氨基酸串联建树,分支上的数值代表自展支持值,若自展支持值为100则不展示。B-D:基于单基因分子标记(atpB、matK和rbcL)构建的玄参科系统发育树
Fig. 1 Phylogenetic analysis of Scrophulariaceae speciesA: Phylogenetic tree of Scrophulariaceae based on the whole chloroplast genome. The phylogenetic tree based on concatenated amino acid sequences of 94 shared PCGs. Number on the branches indicate bootstrap support. The value on the branch indicates the bootstrap support. If the bootstrap support value is 100, it was not displayed. B-D: Phylogenetic tree of Scrophulariaceae based on single gene molecular markers (atpB, matK and rbcL)
图3 玄参科物种叶绿体基因组共线性及基因排列A:玄参科物种叶绿体基因组共线性。B:玄参科物种叶绿体基因组基因排列。红线及红色箭头表示基因排列有差异的区域
Fig. 3 Synteny relationships and gene arrangements of Scrophulariaceae species chloroplast genomesA: Synteny relationships among Scrophulariaceae chloroplast genomes. B: Gene arrangements of Scrophulariaceae species. Red lines and red arrows indicate areas where genes are arranged differently
图5 玄参科物种叶绿体基因组重复序列A: 玄参科物种长重复序列分析。B:玄参科物种SSR分析
Fig. 5 Repeat sequences among Scrophulariaceae species chloroplast genomesA: The number of long repeat sequences of Scrophulariaceae species. B: SSR analysis of Scrophulariaceae species
氨基酸 Amino acid | 密码子 Codon | B. daphnoides | B. globosa | D. violacea | E. oppositifolia | L. frutescens | M. rosulatus | M. laetum | S. ningpoensis | V. chinense |
---|---|---|---|---|---|---|---|---|---|---|
Ala | GCC | *** | ** | |||||||
GCU | * | *** | * | |||||||
Arg | AGG | ** | ||||||||
CGA | * | * | *** | ** | * | *** | ** | |||
CGU | ** | |||||||||
Asn | AAU | * | ||||||||
GAU | ** | ** | * | * | ** | ** | ** | |||
Glu | GAA | ** | * | * | * | * | * | * | ||
Gly | GGU | ** | * | ** | ** | ** | ** | ** | ||
GGA | ** | * | *** | * | * | * | ||||
His | CAU | * | * | ** | ||||||
Ile | AUA | * | * | * | * | * | ||||
Leu | UUA | * | * | * | ||||||
CUA | ** | *** | ||||||||
UUG | ** | |||||||||
Pro | CCA | ** | ** | *** | ** | *** | * | ** | * | ** |
CCU | * | * | * | |||||||
CCC | *** | *** | * | |||||||
Ser | UCC | * | * | |||||||
UCA | * | * | * | * | * | *** | ||||
AGU | * | * | *** | * | ||||||
TER | UGA | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Thr | ACU | * | * | * | ** | * | ||||
ACC | ** | |||||||||
Val | GUA | * | * | ** |
表2 玄参科叶绿体基因组最优密码子分析
Table 2 Analysis of the optimal codons in the Scrophulariaceae species chloroplast genomes
氨基酸 Amino acid | 密码子 Codon | B. daphnoides | B. globosa | D. violacea | E. oppositifolia | L. frutescens | M. rosulatus | M. laetum | S. ningpoensis | V. chinense |
---|---|---|---|---|---|---|---|---|---|---|
Ala | GCC | *** | ** | |||||||
GCU | * | *** | * | |||||||
Arg | AGG | ** | ||||||||
CGA | * | * | *** | ** | * | *** | ** | |||
CGU | ** | |||||||||
Asn | AAU | * | ||||||||
GAU | ** | ** | * | * | ** | ** | ** | |||
Glu | GAA | ** | * | * | * | * | * | * | ||
Gly | GGU | ** | * | ** | ** | ** | ** | ** | ||
GGA | ** | * | *** | * | * | * | ||||
His | CAU | * | * | ** | ||||||
Ile | AUA | * | * | * | * | * | ||||
Leu | UUA | * | * | * | ||||||
CUA | ** | *** | ||||||||
UUG | ** | |||||||||
Pro | CCA | ** | ** | *** | ** | *** | * | ** | * | ** |
CCU | * | * | * | |||||||
CCC | *** | *** | * | |||||||
Ser | UCC | * | * | |||||||
UCA | * | * | * | * | * | *** | ||||
AGU | * | * | *** | * | ||||||
TER | UGA | *** | *** | *** | *** | *** | *** | *** | *** | *** |
Thr | ACU | * | * | * | ** | * | ||||
ACC | ** | |||||||||
Val | GUA | * | * | ** |
图7 玄参科物种分歧时间红点代表校准位点,半透明蓝条表示95%置信区间
Fig. 7 Scrophulariaceae species time-calibrated phylogenyThe red dots indicate calibration point and the 95% highest posterior density interval for node ages are shown with translucent blue bars
1 | Wu ZY, Raven PH. Flora of China, Volume 25: Orchidaceae [M]. Beijing, St. Louis: Missouri Botanical Garden Press, 2009. |
2 | 张刘强, 李医明. 近10年玄参属植物化学成分和药理作用研究进展 [J]. 中草药, 2011, 42(11): 2360-2368. |
Zhang LQ, Li YM. Advances in studies on chemical constituents in plants of Scrophularia L. and their pharmacological effects in recent ten years [J]. Chin Tradit Herb Drugs, 2011, 42(11): 2360-2368. | |
3 | Lee HJ, Kim HL, Lee DR, et al. Scrophulariae Radix: an overview of its biological activities and nutraceutical and pharmaceutical applications [J]. Molecules, 2021, 26(17): 5250. |
4 | Cock IE, Baghtchedjian L, Cordon ME, et al. Phytochemistry, medicinal properties, bioactive compounds, and therapeutic potential of the genus Eremophila (Scrophulariaceae) [J]. Molecules, 2022, 27(22): 7734. |
5 | 王宝庆, 赵雨晴, 杨娜, 等. 醉鱼草属植物化学成分及药理活性研究进展 [J]. 中成药, 2019, 41(7): 1644-1653. |
Wang BQ, Zhao YQ, Yang N, et al. Research progress on chemical constituents and pharmacological activities of Buddleja [J]. Chin Tradit Pat Med, 2019, 41(7): 1644-1653. | |
6 | Zhang PP, Xu WB, Lu X, et al. Analysis of Codon usage bias of chloroplast genomes in Gynostemma species [J]. Physiol Mol Biol Plants, 2021, 27(12): 2727-2737. |
7 | Li SF, Su T, Cheng GQ, et al. Chromosome evolution in connection with repetitive sequences and epigenetics in plants [J]. Genes, 2017, 8(10): 290. |
8 | 姜汶君, 郭梦月, 庞晓慧. 叶绿体基因组在药用植物鉴定及系统进化研究中的应用 [J]. 世界中医药, 2020, 15(5): 702-708, 716. |
Jiang WJ, Guo MY, Pang XH. Application of chloroplast genome in identification and phylogenetic analysis of medicinal plants [J]. World Chin Med, 2020, 15(5): 702-708, 716. | |
9 | Kwak SY, Lew TTS, Sweeney CJ, et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers [J]. Nat Nanotechnol, 2019, 14(5): 447-455. |
10 | Ruf S, Forner J, Hasse C, et al. High-efficiency generation of fertile transplastomic Arabidopsis plants [J]. Nat Plants, 2019, 5(3): 282-289. |
11 | Chen SF. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp [J]. Imeta, 2023, 2(2): e107. |
12 | Jin JJ, Yu WB, Yang JB, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes [J]. Genome Biol, 2020, 21(1): 241. |
13 | Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform [J]. Bioinformatics, 2009, 25(14): 1754-1760. |
14 | Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and SAMtools [J]. Bioinformatics, 2009, 25(16): 2078-2079. |
15 | Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer [J]. Nat Biotechnol, 2011, 29(1): 24-26. |
16 | Tillich M, Lehwark P, Pellizzer T, et al. GeSeq - versatile and accurate annotation of organelle genomes [J]. Nucleic Acids Res, 2017, 45(W1): W6-W11. |
17 | Shi LC, Chen HM, Jiang M, et al. CPGAVAS2, an integrated plastome sequence annotator and analyzer [J]. Nucleic Acids Res, 2019, 47(W1): W65-W73. |
18 | Rombel IT, Sykes KF, Rayner S, et al. ORF-FINDER a vector for high-throughput gene identification [J]. Gene, 2002, 282(1/2): 33-41. |
19 | Zhang D, Gao FL, Jakovlić I, et al. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies [J]. Mol Ecol Resour, 2020, 20(1): 348-355. |
20 | Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability [J]. Mol Biol Evol, 2013, 30(4): 772-780. |
21 | Ranwez V, Douzery EJP, Cambon C, et al. MACSE v2: toolkit for the alignment of coding sequences accounting for frameshifts and stop codons [J]. Mol Biol Evol, 2018, 35(10): 2582-2584. |
22 | Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments [J]. Syst Biol, 2007, 56(4): 564-577. |
23 | Nguyen LT, Schmidt HA, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies [J]. Mol Biol Evol, 2015, 32(1): 268-274. |
24 | Letunic I, Bork P. Interactive tree of life (iTOL): an online tool for phylogenetic tree display and annotation [J]. Bioinformatics, 2007, 23(1): 127-128. |
25 | Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement [J]. PLoS One, 2010, 5(6): e11147. |
26 | Amiryousefi A, Hyvönen J, Poczai P. IRscope: an online program to visualize the junction sites of chloroplast genomes [J]. Bioinformatics, 2018, 34(17): 3030-3031. |
27 | Kurtz S, Choudhuri JV, Ohlebusch E, et al. REPuter: the manifold applications of repeat analysis on a genomic scale [J]. Nucleic Acids Res, 2001, 29(22): 4633-4642. |
28 | Jin JJ, Yu WB, Yang JB, et al. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes [J]. Genome Biol, 2020, 21(1): 241. |
29 | Tang DF, Wei F, Cai ZQ, et al. Analysis of Codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth [J]. Dev Genes Evol, 2021, 231(1-2): 1-9. |
30 | Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses [J]. Bioinformatics, 2009, 25(15): 1972-1973. |
31 | Yang ZH. PAML 4: phylogenetic analysis by maximum likelihood [J]. Mol Biol Evol, 2007, 24(8): 1586-1591. |
32 | Fowler RM, McLay TGB, Schuster TM, et al. Plastid phylogenomic analysis of tribe Myoporeae (Scrophulariaceae) [J]. Plant Syst Evol, 2020, 306(3): 52. |
33 | Zheng GQ, Ma J, Yang J, et al. Characterization of the complete chloroplast genome of Buddleja alternifolia (Buddleiaceae) [J]. Mitochondrial DNA B Resour, 2019, 4(2): 3689-3690. |
34 | Jia GL, Wang WR, Liang XQ, et al. The complete chloroplast genome of the Buddleja alternifolia (Buddleiaceae), an ornamental plant [J]. Mitochondrial DNA B Resour, 2020, 5(1): 392-393. |
35 | Ge J, Cai L, Bi GQ, et al. Characterization of the complete chloroplast genomes of Buddleja colvilei and B. sessilifolia: implications for the taxonomy of Buddleja L [J]. Molecules, 2018, 23(6): 1248. |
36 | Zhao F, Liu B, Liu S, et al. Disentangling a 40-year-old taxonomic puzzle: the phylogenetic position of Mimulicalyx (Lamiales) [J]. Bot J Linn Soc, 2023, 201(2): 135-153. |
37 | Yi DK, Kim KJ. The two complete plastomes from Scrophularia (Scrophulariaceae): Scrophularia buergeriana and S. takesimensis [J]. Mitochondrial DNA B Resour, 2016, 1(1): 710-712. |
38 | Ni LH, Zhao ZL, Dorje G, et al. The complete chloroplast genome of ye-Xing-Ba (Scrophularia dentata; Scrophulariaceae), an alpine Tibetan herb [J]. PLoS One, 2016, 11(7): e0158488. |
39 | Wang RH, Gao J, Feng JY, et al. Comparative and phylogenetic analyses of complete chloroplast genomes of Scrophularia incisa complex (Scrophulariaceae) [J]. Genes, 2022, 13(10): 1691. |
40 | Ai HL, Qin CL, Ye K, et al. Characterization of the complete chloroplast genome of a well-known Chinese medicinal herb, Scrophularia ningpoensis [J]. Mitochondrial DNA B Resour, 2020, 5(1): 484-485. |
41 | Choi KS, Park S. The complete chloroplast genome sequence of the Korean endemic plant Scrophularia takesimensis [J]. Mitochondrial DNA Part A, 2016, 27(3): 2058-2059. |
42 | Dong X, Mkala EM, Mutinda ES, et al. Taxonomy, comparative genomics of Mullein (Verbascum, Scrophulariaceae), with implications for the evolution of Verbascum and Lamiales [J]. BMC Genomics, 2022, 23(1): 566. |
43 | Bi YQ, Deng P, Liu LX. The complete chloroplast genome sequence of purple mullein (Verbascum phoeniceum L.) [J]. Mitochondrial DNA B Resour, 2020, 5(1): 819-820. |
44 | Guo L, Wang X, Wang RH, et al. Characterization and comparative analysis of chloroplast genomes of medicinal herb Scrophularia ningpoensis and its common adulterants (Scrophulariaceae) [J]. Int J Mol Sci, 2023, 24(12): 10034. |
45 | Powell W, Morgante M, Andre C, et al. Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome [J]. Curr Biol, 1995, 5(9): 1023-1029. |
46 | Zhu AD, Guo WH, Gupta S, et al. Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates [J]. New Phytol, 2016, 209(4): 1747-1756. |
47 | Kane N, Sveinsson S, Dempewolf H, et al. Ultra-barcoding in cacao (Theobroma Spp. ; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA [J]. Am J Bot, 2012, 99(2): 320-329. |
48 | Hollingsworth PM. Refining the DNA barcode for land plants [J]. Proc Natl Acad Sci U S A, 2011, 108(49): 19451-19452. |
49 | Timme RE, Kuehl JV, Boore JL, et al. A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats [J]. Am J Bot, 2007, 94(3): 302-312. |
50 | Yang HS, Li XP, Liu DJ, et al. Genetic diversity and population structure of the endangered medicinal plant Phellodendron amurense in China revealed by SSR markers [J]. Biochem Syst Ecol, 2016, 66: 286-292. |
51 | Wang L, Wuyun TN, Du HY, et al. Complete chloroplast genome sequences of Eucommia ulmoides: genome structure and evolution [J]. Tree Genet Genomes, 2016, 12(1): 12. |
52 | Nie XJ, Lv SZ, Zhang YX, et al. Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora) [J]. PLoS One, 2012, 7(5): e36869. |
53 | 张文娟. 基于密码子水平的生物信息学分析及进化研究 [D]. 上海: 复旦大学, 2006. |
Zhang WJ. Bioinformatics analysis and evolution research based on Codon level [D]. Shanghai: Fudan University, 2006. | |
54 | 代江鹏, 蔡一鸣, 刘巧珍, 等. 甘草属7种植物叶绿体基因组密码子使用偏好性分析 [J]. 中草药, 2023, 54(9): 2907-2916. |
Dai JP, Cai YM, Liu QZ, et al. Analysis of Codon usage bias of chloroplast genome in seven Glycyrrhiza species [J]. Chin Tradit Herb Drugs, 2023, 54(9): 2907-2916. |
[1] | 杨雨青, 谭娟, 汪芳, 彭顺利, 陈婕, 谭明燕, 吕美艳, 周富裕, 刘声传. 茶树叶绿体基因组的研究与应用进展[J]. 生物技术通报, 2024, 40(2): 20-30. |
[2] | 尹明华, 余锾媛, 肖心怡, 王玉婷. 江西铅山红芽芋叶绿体基因组特征及系统发育分析[J]. 生物技术通报, 2023, 39(6): 233-247. |
[3] | 刘雄伟, 刘畅, 曾宪法, 杨小英, 俸婷婷, 赵杰宏, 周英. 朱砂根叶绿体全基因组解析及系统发育分析[J]. 生物技术通报, 2023, 39(1): 232-242. |
[4] | 钱方, 高作敏, 胡利娟, 王洪程. 海甘蓝(Crambe abyssinica)叶绿体基因组特征及其系统发育研究[J]. 生物技术通报, 2022, 38(6): 174-186. |
[5] | 朱斌, 甘晨晨, 王洪程. 球花石斛(Dendrobium thyrsiflorum)叶绿体基因组特征及亲缘关系解析[J]. 生物技术通报, 2021, 37(5): 38-47. |
[6] | 李裕华, 任永康, 赵兴华, 刘江, 韩斌, 王长彪, 唐朝晖. 禾本科主要农作物叶绿体基因组研究进展[J]. 生物技术通报, 2020, 36(11): 112-121. |
[7] | 张广志, 王加宁, 吴晓青, 周方园, 张新建, 赵晓燕, 谢雪迎, 周红姿. 设施番茄根围土样中木霉菌多样性及功能活性分析[J]. 生物技术通报, 2018, 34(4): 179-185. |
[8] | 胡文哲, 谭泽文, 王勇, 徐羡微, 谭志远. 藤县药用野生稻内生固氮菌分离鉴定及系统发育分析[J]. 生物技术通报, 2016, 32(6): 111-119. |
[9] | 刘国红, 刘波, 林营志, 唐建阳. 基于脂肪酸生物标记与16S rRNA的芽胞杆菌系统发育分析比较[J]. 生物技术通报, 2015, 31(3): 146-153. |
[10] | 王菲, 刘抗, 范家同, 成守亮, 王子元. 一株耐盐弧菌Vibrio sp.K1-L的分离与鉴定[J]. 生物技术通报, 2014, 30(4): 127-131. |
[11] | 侯新东, 尹帅, 盛桂莲, 程丹丹, 赖旭龙. 基于ITS序列探讨10种荨麻科植物的系统发育关系[J]. 生物技术通报, 2013, 0(8): 68-73. |
[12] | 彭慧超;程大志;王爱珍;王环;王海庆;沈建伟;司庆文;韩发;周党卫;. 冬虫夏草培养子实体ITS,5.8S的分析及系统发育研究[J]. , 2010, 0(07): 128-133. |
[13] | 王松华;田亚平;. 产酸性脲酶菌株的筛选、鉴定及其脲酶的应用初探[J]. , 2008, 0(06): 175-178. |
[14] | 郝云婕;韩素贞;. gyrB基因在细菌系统发育分析中的应用[J]. , 2008, 0(02): 39-41. |
[15] | 刘妍;李志勇;. 具有多重酶活性的澳大利亚厚皮海绵共附生放线菌的研究[J]. , 2006, 0(05): 121-125. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 17
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 19
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||