生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 330-342.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0801
• 研究报告 • 上一篇
任鑫茹1(), 赵宏璐1, 李雅静1, 刘荣军2, 曾凡力3, 王钦宏4, 王震1(
)
收稿日期:
2024-08-21
出版日期:
2025-03-26
发布日期:
2025-03-20
通讯作者:
王震,男,博士,副教授,研究方向 :生物基化学品开发及酵母育种;E-mail: wangzhen@hebau.edu.cn作者简介:
任鑫茹,女,硕士研究生,研究方向 :微生物发酵饲料开发;E-mail: renxinru2022@163.com
基金资助:
REN Xin-ru1(), ZHAO Hong-lu1, LI Ya-jing1, LIU Rong-jun2, ZENG Fan-li3, WANG Qin-hong4, WANG Zhen1(
)
Received:
2024-08-21
Published:
2025-03-26
Online:
2025-03-20
摘要:
目的 以农业资源废弃物玉米秸秆为主要原料,以耐低温酿酒酵母、乳酸菌和枯草芽孢杆菌为发酵菌种,建立玉米秸秆黄贮低温发酵工艺,以期获得蛋白含量高、适口性强的优质玉米秸秆黄贮饲料。 方法 将粗蛋白含量作为主要指标,探究发酵菌剂复配比例;然后通过单因素试验结合响应面优化试验探究复配菌剂接种量、发酵时间、硫酸铵添加量对发酵饲料的影响;最后对低温(10℃)发酵饲料的品质进行综合评价。 结果 当耐低温酿酒酵母、乳酸菌和枯草芽孢杆菌复配比例为3∶1∶3,且复配菌剂接种量为18.50%,发酵时间为20.50 d,硫酸铵添加量为2.53%时,饲料粗蛋白含量最高,为20.05%。与常温(30℃)发酵相比,低温发酵赋予秸秆饲料更浓郁的香气,揭示了20种差异显著的香气成分,其中苯乙醇含量最高,达到20.22 μg/g,赋予饲料玫瑰香气。同时,在低温发酵饲料中检测到甲氧基乙酸乙酯(清香味)、草酸二环丁酯(芳香味)、碳酸甲乙酯(果香味)等特征芳香气味物质。此外,低温发酵减少霉菌污染,与常温不添加菌剂和常温添加菌剂发酵相比,低温发酵饲料中霉菌毒素含量分别降低46.4%和22.9%。 结论 混菌低温发酵可有效提高玉米秸秆黄贮饲料的品质,在提高玉米秸秆黄贮饲料蛋白含量和增香诱食方面具有较大的潜力。
任鑫茹, 赵宏璐, 李雅静, 刘荣军, 曾凡力, 王钦宏, 王震. 混菌低温发酵对玉米秸秆黄贮饲料品质的影响[J]. 生物技术通报, 2025, 41(3): 330-342.
REN Xin-ru, ZHAO Hong-lu, LI Ya-jing, LIU Rong-jun, ZENG Fan-li, WANG Qin-hong, WANG Zhen. Impact of Low-temperature Fermentation with Mixed Microbial Agent on the Quality of Corn Straw Yellow Silage Feeds[J]. Biotechnology Bulletin, 2025, 41(3): 330-342.
组成成分Composition | 含量Content |
---|---|
玉米秸秆 | 100 g |
糖蜜 | 5%(以玉米秸秆重量计) |
硫酸铵 | 2.5%(以玉米秸秆重量计) |
水 | 65%(占总质量) |
表1 发酵基料组成
Table 1 Composition of fermented base material
组成成分Composition | 含量Content |
---|---|
玉米秸秆 | 100 g |
糖蜜 | 5%(以玉米秸秆重量计) |
硫酸铵 | 2.5%(以玉米秸秆重量计) |
水 | 65%(占总质量) |
试验号 Experiment No. | 菌种名称Name of strain | ||
---|---|---|---|
W6-Evo20 | LAB1 | JY3242 | |
1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 |
3 | 1 | 3 | 3 |
4 | 2 | 1 | 2 |
5 | 2 | 2 | 3 |
6 | 2 | 3 | 1 |
7 | 3 | 1 | 3 |
8 | 3 | 2 | 1 |
9 | 3 | 3 | 2 |
对照 | 0 | 0 | 0 |
表2 耐低温酿酒酵母菌、乳酸菌、枯草芽孢杆菌的复配比例
Table 2 Compounding ratio of cold-resistant S. cerevisiae, lactic acid bacteria and Bacillus subtilis
试验号 Experiment No. | 菌种名称Name of strain | ||
---|---|---|---|
W6-Evo20 | LAB1 | JY3242 | |
1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 |
3 | 1 | 3 | 3 |
4 | 2 | 1 | 2 |
5 | 2 | 2 | 3 |
6 | 2 | 3 | 1 |
7 | 3 | 1 | 3 |
8 | 3 | 2 | 1 |
9 | 3 | 3 | 2 |
对照 | 0 | 0 | 0 |
水平 Level | 因素Factor | ||
---|---|---|---|
A 复配菌剂接种量 Inoculation amount of compound microbial agent A/% | B发酵时间 Fermentation time B/d | C硫酸铵添加量 Addition amount of ammonium sulfate C/% | |
-1 | 10 | 15 | 2 |
0 | 15 | 20 | 2.5 |
1 | 20 | 25 | 3 |
表3 Box-Behnken设计中各因素水平
Table 3 Levels of factors in Box-Behnken design
水平 Level | 因素Factor | ||
---|---|---|---|
A 复配菌剂接种量 Inoculation amount of compound microbial agent A/% | B发酵时间 Fermentation time B/d | C硫酸铵添加量 Addition amount of ammonium sulfate C/% | |
-1 | 10 | 15 | 2 |
0 | 15 | 20 | 2.5 |
1 | 20 | 25 | 3 |
等级Grade | 优良 Excellent | 中等 Medium | 差等 Inferior quality |
---|---|---|---|
颜色 | 比较接近原料颜色, 一般呈黄绿或青绿色 | 与原料颜色相差较大, 呈黄褐色或暗绿色 | 黑色或墨绿色 |
香气 | 芳香、酒酸味 | 芳香味弱,稍有酒精或醋酸味 | 刺鼻腐臭味、霉味或其他怪味 |
酸味 | 酸味较浓 | 酸味中 | 酸味淡,味苦 |
质地 | 柔软湿润,原料茎、叶、花保持原状, 叶脉清晰、松散 | 柔软,水分稍多,原料茎、叶、 花基本保持原状 | 腐烂、黏结成块或滴水, 原料茎、叶、花保持极差 |
表4 感官评价标准
Table 4 Sensory evaluation standards
等级Grade | 优良 Excellent | 中等 Medium | 差等 Inferior quality |
---|---|---|---|
颜色 | 比较接近原料颜色, 一般呈黄绿或青绿色 | 与原料颜色相差较大, 呈黄褐色或暗绿色 | 黑色或墨绿色 |
香气 | 芳香、酒酸味 | 芳香味弱,稍有酒精或醋酸味 | 刺鼻腐臭味、霉味或其他怪味 |
酸味 | 酸味较浓 | 酸味中 | 酸味淡,味苦 |
质地 | 柔软湿润,原料茎、叶、花保持原状, 叶脉清晰、松散 | 柔软,水分稍多,原料茎、叶、 花基本保持原状 | 腐烂、黏结成块或滴水, 原料茎、叶、花保持极差 |
得分Score | 10-72 | 71-37 | 36-11 | 10-0 |
---|---|---|---|---|
等级 | 优等 | 良好 | 一般 | 劣质 |
表5 饲料质量综合评分等级
Table 5 Comprehensive scoring grade for feed quality
得分Score | 10-72 | 71-37 | 36-11 | 10-0 |
---|---|---|---|---|
等级 | 优等 | 良好 | 一般 | 劣质 |
图1 不同因素对低温发酵饲料粗蛋白含量的影响小写字母不同表示差异显著(P<0.05)。下同
Fig. 1 Effects of different factors on the crude protein contents of low-temperature fermented feedDifferent lowercase letters indicated significant difference (P<0.05). The same below
试验组 No. | 复配菌剂接种量 Inoculation amount of compound microbial agent/% | 发酵时间 Fermentation time/d | 硫酸铵添加量 Addition amount of ammonium sulfate/% | 粗蛋白含量 Contents of crude protein/% |
---|---|---|---|---|
1 | 15 | 25 | 3 | 17.85 |
2 | 15 | 15 | 2 | 17.28 |
3 | 20 | 20 | 2 | 17.22 |
4 | 10 | 15 | 2.5 | 15.36 |
5 | 20 | 25 | 2.5 | 16.92 |
6 | 15 | 25 | 2 | 17.65 |
7 | 10 | 20 | 3 | 16.37 |
8 | 10 | 20 | 2 | 17.36 |
9 | 10 | 25 | 2.5 | 17.07 |
10 | 15 | 20 | 2.5 | 19.96 |
11 | 15 | 20 | 2.5 | 20.14 |
12 | 15 | 20 | 2 | 20.00 |
13 | 20 | 20 | 3 | 17.69 |
14 | 20 | 15 | 2.5 | 16.52 |
15 | 15 | 15 | 3 | 16.47 |
16 | 15 | 20 | 2.5 | 20.01 |
17 | 15 | 20 | 2.5 | 20.22 |
表6 响应面优化低温发酵玉米秸秆黄贮饲料粗蛋白含量结果
Table 6 Crude protein content of corn straw yellow silage at low-temperature fermentation via response surface optimization
试验组 No. | 复配菌剂接种量 Inoculation amount of compound microbial agent/% | 发酵时间 Fermentation time/d | 硫酸铵添加量 Addition amount of ammonium sulfate/% | 粗蛋白含量 Contents of crude protein/% |
---|---|---|---|---|
1 | 15 | 25 | 3 | 17.85 |
2 | 15 | 15 | 2 | 17.28 |
3 | 20 | 20 | 2 | 17.22 |
4 | 10 | 15 | 2.5 | 15.36 |
5 | 20 | 25 | 2.5 | 16.92 |
6 | 15 | 25 | 2 | 17.65 |
7 | 10 | 20 | 3 | 16.37 |
8 | 10 | 20 | 2 | 17.36 |
9 | 10 | 25 | 2.5 | 17.07 |
10 | 15 | 20 | 2.5 | 19.96 |
11 | 15 | 20 | 2.5 | 20.14 |
12 | 15 | 20 | 2 | 20.00 |
13 | 20 | 20 | 3 | 17.69 |
14 | 20 | 15 | 2.5 | 16.52 |
15 | 15 | 15 | 3 | 16.47 |
16 | 15 | 20 | 2.5 | 20.01 |
17 | 15 | 20 | 2.5 | 20.22 |
变异来源 Source of variation | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|
Model | 39.05 | 9 | 4.34 | 436.46 | <0.000 1 | ** |
A-复配菌剂接种量 | 0.607 6 | 1 | 0.607 6 | 61.12 | 0.000 1 | ** |
B-发酵时间 | 1.86 | 1 | 1.86 | 186.81 | <0.000 1 | ** |
C-硫酸铵添加量 | 0.161 | 1 | 0.161 | 16.2 | 0.005 0 | * |
AB | 0.423 8 | 1 | 0.423 8 | 42.63 | 0.000 3 | ** |
AC | 0.531 4 | 1 | 0.531 4 | 53.44 | 0.000 2 | ** |
BC | 0.257 8 | 1 | 0.257 8 | 25.92 | 0.001 4 | ** |
A² | 14.8 | 1 | 14.8 | 1 489.01 | <0.000 1 | ** |
B² | 12.48 | 1 | 12.48 | 1 255.1 | <0.000 1 | ** |
C² | 4.48 | 1 | 4.48 | 450.68 | <0.000 1 | ** |
残值 | 0.069 6 | 7 | 0.009 9 | |||
失拟项 | 0.021 6 | 3 | 0.007 2 | 0.600 1 | 0.648 2 | Not significant |
离差 | 0.048 | 4 | 0.012 | |||
总误差 | 39.12 | 16 |
表7 低温发酵玉米秸秆黄贮饲料条件优化方差分析
Table 7 Analysis of variance of condition optimization for low-temperature fermentation corn straw yellow silage feed
变异来源 Source of variation | 平方和 Sum of squares | 自由度 df | 均方 Mean square | F值 F value | P值 P value | 显著性 Significance |
---|---|---|---|---|---|---|
Model | 39.05 | 9 | 4.34 | 436.46 | <0.000 1 | ** |
A-复配菌剂接种量 | 0.607 6 | 1 | 0.607 6 | 61.12 | 0.000 1 | ** |
B-发酵时间 | 1.86 | 1 | 1.86 | 186.81 | <0.000 1 | ** |
C-硫酸铵添加量 | 0.161 | 1 | 0.161 | 16.2 | 0.005 0 | * |
AB | 0.423 8 | 1 | 0.423 8 | 42.63 | 0.000 3 | ** |
AC | 0.531 4 | 1 | 0.531 4 | 53.44 | 0.000 2 | ** |
BC | 0.257 8 | 1 | 0.257 8 | 25.92 | 0.001 4 | ** |
A² | 14.8 | 1 | 14.8 | 1 489.01 | <0.000 1 | ** |
B² | 12.48 | 1 | 12.48 | 1 255.1 | <0.000 1 | ** |
C² | 4.48 | 1 | 4.48 | 450.68 | <0.000 1 | ** |
残值 | 0.069 6 | 7 | 0.009 9 | |||
失拟项 | 0.021 6 | 3 | 0.007 2 | 0.600 1 | 0.648 2 | Not significant |
离差 | 0.048 | 4 | 0.012 | |||
总误差 | 39.12 | 16 |
图2 三因素对低温发酵玉米秸秆黄贮饲料粗蛋白含量的交互作用
Fig. 2 Interaction of three factors on the crude protein content of low-temperature fermented corn straw yellow silage feed
样品名称 Description of sample | 10℃未加菌剂发酵饲料 Fermented feed without microbial agent at 10℃ | 30℃未加菌剂发酵饲料 Fermented feed without microbial agent at 30℃ | 10℃加菌剂发酵饲料 Fermented feed with microbial agent at 10℃ | 30℃加菌剂发酵饲料 Fermented feed with microbial agent at 30℃ | 未发酵基料 Unfermented base material |
---|---|---|---|---|---|
含量 Content | 2.85±0.85c | 4.91±1.13a | 2.63±0.74c | 3.41±0.99b | 3.63±0.38b |
表8 玉米秸秆黄贮饲料霉菌毒素含量
Table 8 Mycotoxin content of corn straw yellow silage feed
样品名称 Description of sample | 10℃未加菌剂发酵饲料 Fermented feed without microbial agent at 10℃ | 30℃未加菌剂发酵饲料 Fermented feed without microbial agent at 30℃ | 10℃加菌剂发酵饲料 Fermented feed with microbial agent at 10℃ | 30℃加菌剂发酵饲料 Fermented feed with microbial agent at 30℃ | 未发酵基料 Unfermented base material |
---|---|---|---|---|---|
含量 Content | 2.85±0.85c | 4.91±1.13a | 2.63±0.74c | 3.41±0.99b | 3.63±0.38b |
图4 玉米秸秆黄贮饲料发酵变化情况A:玉米秸秆黄贮饲料有机氮和粗蛋白含量变化;B:玉米秸秆黄贮饲料中挥发性物质含量分析
Fig. 4 Fermentation changes of corn straw yellow silage feedA: Variation of organic nitrogen and crude protein content in corn straw yellow silage feeds. B: Analysis of volatile matter content in corn straw yellow silage feeds
图5 5种玉米秸秆黄贮饲料的OPLS-DAA:未发酵基料,B:10℃未加菌剂,C:10℃加菌剂,D:30℃未加菌剂,E:30℃加菌剂
Fig. 5 OPLS-DA of five kinds of corn straw yellow silage feedsA: Unfermented base material. B: 10℃ without microbial agent. C: 10℃ with microbial agent. D: 30℃ without microbial agent. E: 30℃ with microbial agent.
香气成分Odorous constituent | P | VIP |
---|---|---|
醚类 | 0.000 3 | 1.323 16 |
酯类 | 0.040 8 | 1.140 23 |
醇类 | 0.030 1 | 1.135 96 |
酸酐类 | 0.000 2 | 1.135 20 |
其他 | 0.328 5 | 0.991 53 |
烯烃类 | 0.000 0 | 0.986 77 |
酸类 | 0.091 1 | 0.952 78 |
芳香化合物 | 0.000 0 | 0.948 47 |
杂环化合物 | 0.000 3 | 0.894 22 |
烷类 | 0.048 1 | 0.856 07 |
醛类 | 0.154 0 | 0.801 85 |
酮类 | 0.117 7 | 0.471 21 |
表9 12类挥发性成分的P值和VIP值
Table 9 P value and VIP value of 12 kinds of volatile components
香气成分Odorous constituent | P | VIP |
---|---|---|
醚类 | 0.000 3 | 1.323 16 |
酯类 | 0.040 8 | 1.140 23 |
醇类 | 0.030 1 | 1.135 96 |
酸酐类 | 0.000 2 | 1.135 20 |
其他 | 0.328 5 | 0.991 53 |
烯烃类 | 0.000 0 | 0.986 77 |
酸类 | 0.091 1 | 0.952 78 |
芳香化合物 | 0.000 0 | 0.948 47 |
杂环化合物 | 0.000 3 | 0.894 22 |
烷类 | 0.048 1 | 0.856 07 |
醛类 | 0.154 0 | 0.801 85 |
酮类 | 0.117 7 | 0.471 21 |
1 | Fu YL, Zhang J, Guan TZ. High-value utilization of corn straw: from waste to wealth [J]. Sustainability, 2023, 15(19): 14618. |
2 | Li H, Dai MW, Dai SL, et al. Current status and environment impact of direct straw return in China's cropland-A review [J]. Ecotoxicology and Environmental Safety, 2018, 159: 293-300. |
3 | Ma YQ, Shen YQ, Liu Y. State of the art of straw treatment technology: challenges and solutions forward [J]. Bioresource Technology, 2020, 313: 123656. |
4 | 杨傅歆怡, 刘晓倩, 任鑫茹, 等. 酿酒酵母在秸秆发酵饲料中的研究和应用进展 [J]. 饲料研究, 2023, 46(15): 128-131. |
Yang F, Liu XQ, Ren XR, et al. Research and application progress of Saccharomyces cerevisiae in straw fermented feed [J]. Feed Research, 2023, 46(15): 128-131. | |
5 | Watzlawick H, Altenbuchner J. Multiple integration of the gene ganA into the Bacillus subtilis chromosome for enhanced β- galactosidase production using the CRISPR/Cas9 system [J]. AMB Express, 2019, 9(1): 158. |
6 | Li M, Zi XJ, Zhou HL, et al. Silage fermentation and ruminal degradation of cassava foliage prepared with microbial additive [J]. AMB Express, 2019, 9(1): 180. |
7 | 田亚东. 秸秆饲料发酵菌剂生产工艺的优化研究 [D]. 天津: 天津科技大学, 2020. |
Tian YD. Study on optimization of production technology of straw feed fermentation agent [D]. Tianjin: Tianjin University of Science & Technology, 2020. | |
8 | Bernardes TF, Daniel JLP, Adesogan AT, et al. Silage review: Unique challenges of silages made in hot and cold regions [J]. Journal of Dairy Science, 2018, 101(5): 4001-4019. |
9 | Bai J, Ding ZT, Su RN, et al. Storage temperature is more effective than lactic acid bacteria inoculations in manipulating fermentation and bacterial community diversity, co-occurrence and functionality of the whole-plant corn silage [J]. Microbiology Spectrum, 2022, 10(2): e0010122. |
10 | Xu DM, Ke WC, Zhang P, et al. Characteristics of Pediococcus pentosaceus Q6 isolated from Elymus nutans growing on the Tibetan Plateau and its application for silage preparation at low temperature [J]. Journal of Applied Microbiology, 2019, 126(1): 40-48. |
11 | 韩雅慧. 不同乳酸菌对低温下黄贮玉米秸秆发酵品质及饲料特性的影响 [D]. 大庆: 黑龙江八一农垦大学, 2016. |
Han YH. Effects of different lactic acid bacteria on fermentation quality and feed characteristics of yellow-stored corn stalks at low temperature [D]. Daqing: Heilongjiang Bayi Agricultural University, 2016. | |
12 | Du Q, Ye DQ, Zang XM, et al. Effect of low temperature on the shaping of yeast-derived metabolite compositions during wine fermentation [J]. Food Research International, 2022, 162(Pt A): 112016. |
13 | Zhao YZ, Liu SP, Han X, et al. Combined effects of fermentation temperature and Saccharomyces cerevisiae strains on free amino acids, flavor substances, and undesirable secondary metabolites in Huangjiu fermentation [J]. Food Microbiology, 2022, 108: 104091. |
14 | 张淼. 高寒地区低温青贮优良乳酸菌的筛选及低温青贮体系的优化 [D]. 郑州: 郑州大学, 2018. |
Zhang M. Screening of excellent lactic acid bacteria for low-temperature silage in cold region and optimization of low-temperature silage system [D]. Zhengzhou: Zhengzhou University, 2018. | |
15 | 杨永婧, 任静怡, 李政达, 等. 基于定量描述性分析法和GC-MS对低温发酵面包特征香味物质的分析[J]. 食品与发酵工业, 2024:1-9. |
Yang YJ, Ren JY, Li ZD, et al. Analysis of characteristic aroma substances in low temperature fermentedbread by quantitative descriptive analysis and gas chromatography-mass spectrometry [J]. Food and Fermentation Industries, 2024: 1-9 | |
16 | 郭萌萌. 复合益生菌发酵全株玉米、玉米秸秆及豆粕的效果研究 [D]. 杨凌: 西北农林科技大学, 2019. |
Guo MM. Effect of compound probiotics on fermentation of whole corn, corn stalk and soybean meal [D]. Yangling: Northwest A & F University, 2019. | |
17 | 吴逸飞, 孙宏, 李园成, 等. 微生物固态发酵对饲料营养特性的影响 [J]. 浙江农业学报, 2016, 28(12): 2014-2020. |
Wu YF, Sun H, Li YC, et al. Effects of microbial solid-state fermentation on nutritional value of feeds [J]. Acta Agriculturae Zhejiangensis, 2016, 28(12): 2014-2020. | |
18 | 姚志芳, 冯宇哲, 王磊, 等. 酵母菌和乳酸菌在生物发酵饲料中的应用研究进展 [J]. 饲料研究, 2020, 43(10): 154-158. |
Yao ZF, Feng YZ, Wang L, et al. Application and research progress of yeast and lactic acid bacteria on bio-fermented feed [J]. Feed Research, 2020, 43(10): 154-158. | |
19 | 陈诗宇, 茶光辉, 李吉琴, 等. 固态发酵饲料工艺优化及抗营养因子降解效果研究 [J]. 动物营养学报, 2023, 35(10): 6787-6800. |
Chen SY, Cha GH, Li JQ, et al. Study on optimization of solid-state fermentation feed process and degradation effects of anti-nutritional factor [J]. Chinese Journal of Animal Nutrition, 2023, 35(10): 6787-6800. | |
20 | 申瑞瑞. 微生物发酵剂对马铃薯渣与玉米秸秆和大豆秸秆混贮效果的研究 [D]. 保定: 河北农业大学, 2018. |
Shen RR. Study on the effect of microbial starter on mixed storage of potato residue, corn straw and soybean straw [D]. Baoding: Hebei Agricultural University, 2018. | |
21 | 郭如意. 综合利用玉米深加工副产物固态发酵饲料的研究 [D]. 大连: 大连理工大学, 2021. |
Guo RY. Study on comprehensive utilization of solid-state fermented feed by-products of corn deep processing [D]. Dalian: Dalian University of Technology, 2021. | |
22 | 李雨桐. 马铃薯薯渣固态发酵蛋白饲料及微生物菌剂的开发 [D]. 天津: 天津科技大学, 2022. |
Li YT. Development of solid-state fermented protein feed and microbial inoculum from potato residue [D]. Tianjin: Tianjin University of Science & Technology, 2022. | |
23 | 李梦瑶, 朱庆淞, 周杨, 等. 青贮饲料发酵工艺及应用研究现状 [J]. 现代畜牧兽医, 2024(6): 86-91. |
Li MY, Zhu QS, Zhou Y, et al. Research progress on the fermentation technology and application of silage [J]. Modern Journal of Animal Husbandry and Veterinary Medicine, 2024(6): 86-91. | |
24 | Ni KK, Zhao JY, Zhu BG, et al. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or Sorghum [J]. Bioresour Technol, 2018, 265: 563-567. |
25 | Asghar A, Sairash S, Hussain N, et al. Current challenges of biomass refinery and prospects of emerging technologies for sustainable bioproducts and bioeconomy [J]. Biofuels, Bioproducts and Biorefining, 2022, 16(6): 1478-1494. |
26 | 温学飞, 杨国峰, 李浩霞. 霉菌毒素在发酵全混合日粮中的动态变化研究 [J]. 饲料研究, 2023, 46(22): 141-144. |
Wen XF, Yang GF, Li HX. Study on dynamic change of mycotoxins in fermented total mixed diet [J]. Feed Research, 2023, 46(22): 141-144. | |
27 | Fang QA, Du MR, Chen JW, et al. Degradation and detoxification of aflatoxin B1 by tea-derived Aspergillus niger RAF106 [J]. Toxins, 2020, 12(12): 777. |
28 | Gregori R, Meriggi P, Pietri A, et al. Dynamics of fungi and related mycotoxins during cereal storage in Silo bags [J]. Food Control, 2013, 30(1): 280-287. |
29 | Richard E, Heutte N, Sage L, et al. Toxigenic fungi and mycotoxins in mature corn silage [J]. Food and Chemical Toxicology, 2007, 45(12): 2420-2425. |
30 | González Flores M, Rodríguez ME, Origone AC, et al. Saccharomyces uvarum isolated from Patagonian ciders shows excellent fermentative performance for low temperature cidermaking [J]. Food Research International, 2019, 126: 108656. |
31 | Su RN, Ke WC, Bai J, et al. Comprehensive profiling of the metabolome in corn silage inoculated with or without Lactiplantibacillus plantarum using different untargeted metabolomics analyses [J]. Archives of Animal Nutrition, 2023, 77(5): 323-341. |
32 | Borreani G, Tabacco E, Schmidt RJ, et al. Silage review: Factors affecting dry matter and quality losses in silages [J]. Journal of Dairy Science, 2018, 101(5): 3952-3979. |
[1] | 吴巧茵, 施友志, 李林林, 彭政, 谭再钰, 刘利平, 张娟, 潘勇. 类胡萝卜素降解菌株的原位筛选及其在雪茄提质增香中的应用[J]. 生物技术通报, 2023, 39(9): 192-201. |
[2] | 车永梅, 刘广超, 郭艳苹, 叶青, 赵方贵, 刘新. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225. |
[3] | 王新光, 田磊, 王恩泽, 钟成, 田春杰. 玉米秸秆高效降解微生物复合菌系的构建及降解效果评价[J]. 生物技术通报, 2022, 38(4): 217-229. |
[4] | 张倩, 徐春燕, 张铎, 王亚会, 梁新盈, 李慧. 黄褐土玉米秸秆腐解菌株筛选及其促腐能力研究[J]. 生物技术通报, 2022, 38(12): 233-243. |
[5] | 王奇,王林风,闫德冉,张斐洋,刘天天,吴静波. 玉米秸秆酶水解过程中的酶复配条件优化[J]. 生物技术通报, 2016, 32(3): 171-177. |
[6] | 邓永鸿;. 用单克隆抗体鉴定食用肉中的化合物[J]. , 1989, 0(07): 27-27. |
[7] | 王璋瑜;. LSU以基因工程法研制优质马铃薯[J]. , 1989, 0(05): 28-29. |
[8] | 柴勇;. 川洋葱的根培养物生产更好的食用香料[J]. , 1988, 0(11): 17-18. |
[9] | 孙国凤;. 农水省计划从1987年起普及优质丰产的日产大豆[J]. , 1988, 0(03): 14-14. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 10
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 22
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||