生物技术通报 ›› 2025, Vol. 41 ›› Issue (7): 261-271.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1187
张越(
), 毕钰, 慕雪男, 郑子薇, 王志刚, 徐伟慧(
)
收稿日期:2024-11-26
出版日期:2025-07-26
发布日期:2025-07-22
通讯作者:
徐伟慧,女,博士,教授,硕士生导师,研究方向 :微生物资源挖掘与应用;E-mail: xwh800206@163.com作者简介:张越,女,硕士研究生,研究方向 :微生物菌间互作;E-mail: 2410657507@qq.com基金资助:
ZHANG Yue(
), BI Yu, MU Xue-nan, ZHENG Zi-wei, WANG Zhi-gang, XU Wei-hui(
)
Received:2024-11-26
Published:2025-07-26
Online:2025-07-22
摘要:
目的 Bacillus methylotrophicus JB7可以抑制Fusarium graminearum(Fg)的生长并能控制小麦赤霉病,但其抑菌及控病机制并不明确,探究其抑菌及控病机制,为其应用提供理论依据。 方法 通过对禾谷镰刀菌孢子萌发、抑菌能力和抗氧化酶活性测定等方法,研究JB7无菌上清液(cell-free supernatants, CFS)对Fg孢子数量、菌丝生长和抗氧化酶活性的影响,利用转录组学测序技术分析差异表达基因(DEGs),扩增子测序技术评估喷施JB7后对麦穗毒素含量和微生物群落结构的影响。 结果 菌株JB7的CFS对Fg菌丝生长和分生孢子萌发具有较强的抑制作用,同时CFS引起Fg菌丝超氧化物歧化酶(superoxide dismutase, SOD)、过氧化氢酶(catalase, CAT)活性上升,过氧化物酶(peroxidase, POD)和谷胱甘肽还原酶(glutathione reductase, GR)活性下降。转录组学分析表明,菌株JB7 CFS影响了与氧化应激和毒素有关基因的表达,喷施JB7改变了麦穗中微生物的群落结构,降低了麦穗中Fg的密度和毒素含量。 结论 菌株JB7的CFS通过触发氧化应激和降低毒素水平展现出对Fg的抗真菌作用,且菌株JB7能改变麦穗微生物群落结构,降低Fg的密度和毒素含量。
张越, 毕钰, 慕雪男, 郑子薇, 王志刚, 徐伟慧. 小麦赤霉病拮抗菌JB7的生防特性[J]. 生物技术通报, 2025, 41(7): 261-271.
ZHANG Yue, BI Yu, MU Xue-nan, ZHENG Zi-wei, WANG Zhi-gang, XU Wei-hui. Biocontrol Characteristics of Strain JB7 against Fusarium graminearum[J]. Biotechnology Bulletin, 2025, 41(7): 261-271.
图1 菌株JB7对禾谷镰刀菌 (Fg) 的抑制效果A:菌株JB7不同浓度CFS对孢子萌发的影响;B:菌株JB7中挥发物质对Fg的抑菌效果;C:菌株JB7中挥发物质对Fg的抑菌效果平板图。不同小写字母表示处理间差异显著(P<0.05)。****表示在P<0.000 1水平存在显著差异。下同
Fig. 1 Inhibitory effect of strain JB7 on Fusarium graminearum (Fg)A: The effect of different concentrations of CFS from strain JB7 on spore germination. B: The inhibitory effect of volatile compounds from strain JB7 on Fg. C: Plate of the inhibitory effect of volatile compounds from strain JB7 on Fg. The different lowercase letters indicate significant differences among treatments (P<0.05). **** indicates significant differences at P<0.000 1 . The same below
图2 菌株JB7 CFS对Fg菌丝抗氧化酶活性的影响*、**、***分别表示在P<0.05、P<0.01、P<0.001水平存在显著差异。下同
Fig. 2 Effects of CFS from strain JB7 on the antioxidant enzyme activities of Fg mycelia*, **, and *** indicate significant differences at P<0.05, P<0.01, and P<0.001, respectively. The same below
图3 Fg差异表达基因富集分析A:差异基因的GO富集分析;B:差异基因的KEGG富集分析
Fig. 3 Enrichment analysis of DEGs in FgA: GO enrichment analysis of DEGs; B: KEGG enrichment analysis of DEGs
图4 与氧化应激和毒素有关基因的表达分析A:与氧化应激有关基因的聚类热图;B:与毒素有关基因的聚类热图;C:DON的生物合成;D:利用RT-qPCR检测与氧化应激和毒力因子有关基因的表达
Fig. 4 Expression analysis of genes related to oxidative stress and mycotoxin in FgA: Clustering heatmap of genes related to reactive oxygen species. B: Clustering heatmap of genes related to mycotoxin. C: Biosynthesis of deoxynivalenol. D: Gene expression of genes related to oxidative stress and mycotoxin using RT-qPCR
图5 Fg在麦穗上定殖及其分泌毒素的量A:JB7组麦穗颖片剖面图;B:JB7组组织内部剖面图;C:W组麦穗颖片剖面图;D:W组组织内部剖面图;E:麦穗上真菌毒素含量;箭头表示Fg菌丝分布
Fig. 5 Colonization of Fg in wheat ears and its mycotoxin secretionA: Profile map of glumes wheat ears in JB7 treatment. B: Profile map of inside tissues in JB7 treatment. C: Profile map of glumes wheat ears in water treatment. D: Profile map of inside tissues in water treatment. E: Mycotoxin content in wheat ears. The arrows indicate the distribution of the Fg mycelium
图6 菌株JB7对麦穗中微生物群落结构的影响A:基于Bray-Curtis距离的细菌群落的主坐标分析;B:基于Bray-Curtis距离的真菌群落的主坐标分析;C:不同处理中细菌属水平的相对丰度;D:不同处理中真菌属水平的相对丰度;E:麦穗中Bacillus的绝对丰度;F:麦穗中Fg的相对丰度
Fig. 6 Effects of strain JB7 on microbial community structure in wheat earsA: Principal coordinate analysis of bacterial community based on Bray-Curtis distance. B: Principal coordinate analysis of fungal community based on Bray-Curtis distance. C: Relative abundance of bacterial genera in different treatments. D: Relative abundance of fungal genera in different treatments. E: Absolute abundance of Bacillus in wheat ears. F: Relative abundance of Fg in wheat ears
| [1] | Ma ZQ, Xie Q, Li GQ, et al. Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight [J]. Theor Appl Genet, 2020, 133(5): 1541-1568. |
| [2] | 吴迪, 朱素芹, 张语卉, 等. HGGT基因与小麦赤霉病籽粒毒素积累的关系解析 [J]. 江苏农业科学, 2020, 48(11): 96-100. |
| Wu D, Zhu SQ, Zhang YH, et al. Analysis of relationships among HGGT gene, Fusarium head blight and deoxynivalenol accumulation in wheat grains [J]. Jiangsu Agric Sci, 2020, 48(11): 96-100. | |
| [3] | 王文肖, 刘美玲, 阙亚伟, 等. 贝莱斯芽孢杆菌EA19与多菌灵复配防治小麦赤霉病研究 [J]. 河南农业科学, 2024, 53(10): 117-126. |
| Wang WX, Liu ML, Que YW, et al. Combination of Bacillus velezensis EA19 and carbendazim to control Fusarium head blight on wheat [J]. J Henan Agric Sci, 2024, 53(10): 117-126. | |
| [4] | 王旭, 黄德玉, 吴庆华, 等. 真菌毒素引起的氧化应激及其毒理学意义 [J]. 生态毒理学报, 2015, 10(6): 62-70. |
| Wang X, Huang DY, Wu QH, et al. Oxidative stress induced by mycotoxins and its toxicological significance [J]. Asian J Ecotoxicol, 2015, 10(6): 62-70. | |
| [5] | 余红凤, 张琳, 毕钰, 等. 一株西瓜枯萎病生防菌Bacillus methylotrophicus的筛选、鉴定及抑菌物质分析 [J]. 微生物学通报, 2024, 51(2): 534-553. |
| Yu HF, Zhang L, Bi Y, et al. Screening, identification and antimicrobial substances analysis of a biocontrol bacterium Bacillus methylotrophicus against watermelon Fusarium wilt [J]. Microbiol China, 2024, 51(2): 534-553. | |
| [6] | Boenisch MJ, Schäfer W. Fusarium graminearum forms mycotoxin producing infection structures on wheat [J]. BMC Plant Biol, 2011, 11: 110. |
| [7] | 张震, 邱海萍, 柴荣耀, 等. 一株小麦赤霉病生防菌的鉴定及其生防机制初探 [J]. 中国生物防治学报, 2022, 38(3): 673-680. |
| Zhang Z, Qiu HP, Chai RY, et al. Identification of a biocontrol bacterium strain against Fusarium graminearum and its preliminary study on biocontrol mechanism [J]. Chin J Biol Contr, 2022, 38(3): 673-680. | |
| [8] | Wegulo SN, Baenziger PS, Hernandez Nopsa J, et al. Management of Fusarium head blight of wheat and barley [J]. Crop Prot, 2015, 73: 100-107. |
| [9] | Zhang K, Wang LM, Si HL, et al. Maize stalk rot caused by Fusarium graminearum alters soil microbial composition and is directly inhibited by Bacillus siamensis isolated from rhizosphere soil [J]. Front Microbiol, 2022, 13: 986401. |
| [10] | Ge BB, Liu BH, Nwet TT, et al. Bacillus methylotrophicus strain NKG-1, isolated from Changbai Mountain, China, has potential applications as a biofertilizer or biocontrol agent [J]. PLoS One, 2016, 11(11): e0166079. |
| [11] | Shan HY, Zhao MM, Chen DX, et al. Biocontrol of rice blast by the phenaminomethylacetic acid producer of Bacillus methylotrophicus strain BC79 [J]. Crop Prot, 2013, 44: 29-37. |
| [12] | Cheng XK, Ji XX, Ge YZ, et al. Characterization of antagonistic Bacillus methylotrophicus isolated from rhizosphere and its biocontrol effects on maize stalk rot [J]. Phytopathology, 2019, 109(4): 571-581. |
| [13] | 宗英, 赵月菊, 刘阳, 等. 一株贝莱斯芽孢杆菌抑制禾谷镰刀菌的研究 [J]. 核农学报, 2018, 32(2): 310-317. |
| Zong Y, Zhao YJ, Liu Y, et al. Study on the inhibitory effect of Bacillus velezensis on Fusarium graminearum [J]. J Nucl Agric Sci, 2018, 32(2): 310-317. | |
| [14] | Xu Y, Wang LL, Liang WX, et al. Biocontrol potential of endophytic Bacillus velezensis strain QSE-21 against postharvest grey mould of fruit [J]. Biol Contr, 2021, 161: 104711. |
| [15] | Li Q, Hou ZQ, Zhou DQ, et al. Antifungal activity and possible mechanism of Bacillus amyloliquefaciens FX2 against the postharvest apple ring rot pathogen [J]. Phytopathology, 2022, 112(12): 2486-2494. |
| [16] | Han Q, Wu FL, Wang XN, et al. The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity [J]. Environ Microbiol, 2015, 17(4): 1166-1188. |
| [17] | Zhang LL, Sun CM. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation [J]. Appl Environ Microbiol, 2018, 84(18): e00445-18. |
| [18] | 毕钰, 张琳, 余红凤, 等. 小麦赤霉病拮抗菌JB7的拮抗活性及鉴定 [J]. 微生物学报, 2024, 64(5): 1580-1592. |
| Bi Y, Zhang L, Yu HF, et al. Antagonistic activity and identification of antagonistic bacteria JB7 against Fusarium head blight [J]. Acta Microbiol Sin, 2024, 64(5): 1580-1592. | |
| [19] | 徐伟慧, 王恒煦, 赵井明, 等. 西瓜枯萎病拮抗菌筛选及其拮抗性能研究 [J]. 农业生物技术学报, 2019, 27(12): 2238-2247. |
| Xu WH, Wang HX, Zhao JM, et al. Screening of antagonistic bacteria against Fusarium wilt of watermelon (Citrullus lanatus) and its antagonistic properties [J]. J Agric Biotechnol, 2019, 27(12): 2238-2247. | |
| [20] | Jackowiak H, Packa D, Wiwart M, et al. Scanning electron microscopy of Fusarium damaged kernels of spring wheat [J]. Int J Food Microbiol, 2005, 98(2): 113-123. |
| [21] | 刘明艳, 马嘉晗, 李瑜, 等. 16S rRNA基因高变区V4和V3-V4及测序深度对油藏细菌菌群分析的影响 [J]. 微生物学通报, 2020, 47(2): 440-449. |
| Liu MY, Ma JH, Li Y, et al. Influence of 16S rRNA gene V4 and V3-V4 sequencing and sequencing depth on unraveling bacterial communities inhabiting oil reservoirs [J]. Microbiol China, 2020, 47(2): 440-449. | |
| [22] | Mori K, Iriye R, Hirata M, et al. Quantification of Bacillus species in a wastewater treatment system by the molecular analyses [J]. Biotechnol Bioprocess Eng, 2004, 9(6): 482-489. |
| [23] | Jin PF, Wang HN, Tan Z, et al. Antifungal mechanism of bacillomycin D from Bacillus velezensis HN-2 against Colletotrichum gloeosporioides Penz [J]. Pestic Biochem Physiol, 2020, 163: 102-107. |
| [24] | Kulkarni OS, Mazumder M, Kini S, et al. Volatile methyl jasmonate from roots triggers host-beneficial soil microbiome biofilms [J]. Nat Chem Biol, 2024, 20(4): 473-483. |
| [25] | Zhang YJ, Cao XY, Chen YJ, et al. Potential utility of endophytic Bacillus altitudinis strain P32-3 as a biocontrol agent for the postharvest prevention of sweet potato black rot [J]. Biol Contr, 2023, 186: 105350. |
| [26] | Li LR, Shi YH, Cheng XR, et al. A cell-penetrating peptide analogue, P7, exerts antimicrobial activity against Escherichia coli ATCC25922 via penetrating cell membrane and targeting intracellular DNA [J]. Food Chem, 2015, 166: 231-239. |
| [27] | Li X, Li MT, Liu XK, et al. RNA-Seq provides insights into the mechanisms underlying Ilyonectria robusta responding to secondary metabolites of Bacillus methylotrophicus NJ13 [J]. J Fungi, 2022, 8(8): 779. |
| [28] | Wu RY, Li SY, Hudlikar R, et al. Redox signaling, mitochondrial metabolism, epigenetics and redox active phytochemicals [J]. Free Radic Biol Med, 2022, 179: 328-336. |
| [29] | 燕霞飞, 郑长英, 李凯月, 等. 球孢白僵菌在重金属Cd(Ⅱ)作用下抗氧化酶系变化 [J]. 环境昆虫学报, 2017, 39(5): 992-999. |
| Yan XF, Zheng CY, Li KY, et al. The effect of Cd(Ⅱ) on antioxidant enzymes cctivity of Beauveria bassiana [J]. J Environ Entomol, 2017, 39(5): 992-999. | |
| [30] | Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants [J]. J Exp Bot, 2002, 53(372): 1331-1341. |
| [31] | 何林鑫, 黄荣, 田望军, 等. 欧文氏菌DE2对三种豆科牧草幼苗生长的影响 [J]. 草地学报, 2023, 31(9): 2642-2652. |
| He LX, Huang R, Tian WJ, et al. Effects of Erwinia sp. DE2 on the growth of three leguminous forage seedlings [J]. Acta Agrestia Sin, 2023, 31(9): 2642-2652. | |
| [32] | Ströher E, Harvey Millar A. The biological roles of glutaredoxins [J]. Biochem J, 2012, 446(3): 333-348. |
| [33] | Yin DC, Qi JY. The physiological response of Ectomycorrhizal fungus Lepista sordidato Cd and Cu stress [J]. PeerJ, 2021, 9: e11115. |
| [34] | Kheiri A, Ali Moosawi Jorf S, Malihipour A. Infection process and wheat response to Fusarium head blight caused by Fusarium graminearum [J]. Eur J Plant Pathol, 2019, 153(2): 489-502. |
| [35] | Kim K, Lee Y, Ha A, et al. Chemosensitization of Fusarium graminearum to chemical fungicides using cyclic lipopeptides produced by Bacillus amyloliquefaciens strain JCK-12 [J]. Front Plant Sci, 2017, 8: 2010. |
| [36] | Wang KX, Wang ZG, Xu WH. Induced oxidative equilibrium damage and reduced toxin synthesis in Fusarium oxysporum f. sp. niveum by secondary metabolites from Bacillus velezensis WB [J]. FEMS Microbiol Ecol, 2022, 98(8): fiac080. |
| [37] | Zhao HH, Tao X, Song W, et al. Mechanism of Fusarium graminearum resistance to ergosterol biosynthesis inhibitors: G443S substitution of the drug target FgCYP51A [J]. J Agric Food Chem, 2022, 70(6): 1788-1798. |
| [38] | Gao T, Zhou H, Zhou W, et al. The fungicidal activity of thymol against Fusarium graminearum via inducing lipid peroxidation and disrupting ergosterol biosynthesis [J]. Molecules, 2016, 21(6): 770. |
| [39] | Ruma YN, Keniya MV, Tyndall JDA, et al. Characterisation of Candida parapsilosis CYP51 as a drug target using Saccharomyces cerevisiae as host [J]. J Fungi, 2022, 8(1): 69. |
| [40] | Ji C, Chen ZZ, Kong XH, et al. Biocontrol and plant growth promotion by combined Bacillus spp. inoculation affecting pathogen and AMF communities in the wheat rhizosphere at low salt stress conditions [J]. Front Plant Sci, 2022, 13: 1043171. |
| [41] | Wang CQ, Zhao DY, Qi GZ, et al. Effects of Bacillus velezensis FKM10 for promoting the growth of Malus hupehensis rehd. and inhibiting Fusarium verticillioides [J]. Front Microbiol, 2020, 10: 2889. |
| [42] | 石晶盈, 陈维信, 刘爱媛. 植物内生菌及其防治植物病害的研究进展 [J]. 生态学报, 2006, 26(7): 2395-2401. |
| Shi JY, Chen WX, Liu AY. Advances in the study of endophytes and their effects on control of plant diseases [J]. Acta Ecol Sin, 2006, 26(7): 2395-2401. |
| [1] | 安苗苗, 蔺祥淏, 梁瑞娜, 赵国柱. 碳源对产甲烷菌群调控及产甲烷能力的影响[J]. 生物技术通报, 2025, 41(6): 355-366. |
| [2] | 王睿, 戚继. 整合组织学图像信息增强空间转录组细胞聚类的分辨率[J]. 生物技术通报, 2024, 40(8): 39-46. |
| [3] | 张晓英, 毛咪, 王洪凤, 丁新华, 朱树伟, 石磊. 免疫诱抗剂ZNC对小麦赤霉病防治和产量的影响[J]. 生物技术通报, 2024, 40(8): 95-105. |
| [4] | 许沛冬, 易剑锋, 陈迪, 陈浩, 谢丙炎, 赵文军. 组学技术在生防芽胞杆菌的应用进展[J]. 生物技术通报, 2024, 40(10): 208-220. |
| [5] | 韩乐乐, 宋文迪, 边嘉珅, 李阳, 杨双胜, 陈紫怡, 李晓薇. 转录组与代谢组联合分析揭示大豆GmERD15c参与盐胁迫下类黄酮的生物合成[J]. 生物技术通报, 2024, 40(10): 243-252. |
| [6] | 张洁, 夏明聪, 朱文倩, 梁娟, 孙润红, 徐文, 武超, 杨丽荣. 蔬菜根结线虫生防芽胞杆菌的筛选及作用机理研究[J]. 生物技术通报, 2021, 37(7): 175-182. |
| [7] | 雒丽丽, 张昊, 杨美欣, 王云飞, 许景升, 徐进, 姚强, 冯洁. 黄淮与东北麦区小麦赤霉菌温度相关的致病力分化研究[J]. 生物技术通报, 2021, 37(4): 47-55. |
| [8] | 袁源, 黄海辰, 李琳, 刘国辉, 傅俊生, 吴小平. 石灰对灵芝覆土连作障碍的防控作用及其微生物群落分析[J]. 生物技术通报, 2021, 37(4): 70-84. |
| [9] | 刘亚苓, 于营, 鲁海坤, 雷慧霞, 隋昕, 郭靖. 侧孢短芽孢杆菌S2-31拮抗下细辛叶枯病菌转录组差异表达分析[J]. 生物技术通报, 2021, 37(2): 111-121. |
| [10] | 段佳琪, 李琲琲, 任杰, 邱德文, 李广悦. 一种脱氧雪腐镰刀菌烯醇制备工艺的研究[J]. 生物技术通报, 2020, 36(10): 256-262. |
| [11] | 刘丽丽, 朱华, 闫艳春, 王晓雯, 张蓉, 朱建亚. 鱼类低温耐受机制与功能基因研究进展[J]. 生物技术通报, 2018, 34(8): 50-57. |
| [12] | 郭学武, 张玉, 关翔宇, 倪晓丰, 汪庆, 陈叶福, 肖冬光. 产2,3-丁二醇高木糖耐性肺炎克雷伯氏菌转录组学分析与发酵优化[J]. 生物技术通报, 2018, 34(8): 159-169. |
| [13] | 金玉, 李赫健, 冯成强. 转录组-代谢组分析方法及其在药物作用机理研究中的应用[J]. 生物技术通报, 2018, 34(12): 68-76. |
| [14] | 李霞,王顺利. 高通量转录组在园艺植物色素代谢中的研究进展[J]. 生物技术通报, 2017, 33(7): 7-14. |
| [15] | 杨鹏. 细胞质雄性不育系转录组学研究进展[J]. 生物技术通报, 2016, 32(12): 1-7. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||