[1] Van Haveren J, Scott EL, Sanders J.Bulk chemicals from biomass[J]. Biofuels Bioproducts & Biorefining, 2008, 2(1):41-57. [2] Celińska E, Grajek W.Biotechnological production of 2, 3-butanediol-current state and prospects[J]. Biotechnology Advances, 2009, 27(1):715-725. [3] Guo XW, Cao CH, Wang YZ, et al.Effect of the inactivation of lactate dehydrogenase, ethanol dehydrogenase, and phosphotransacetylase on 2, 3-butanediol production in Klebsiella pneumoniae strain[J]. Biotechnology for Biofuels, 2014, 7(1):44. [4] Syu MJ.Biological production of 2, 3-butanediol[J]. Applied Microbiology&Biotechnology, 2001, 55(1):10-18. [5] Ma CQ, Wang A, Qin J, et al.Enhanced 2, 3-butanediol production by Klebsiella pneumoniae SDM[J]. Applied Microbiology & Biotechnology, 2009, 82(1):49-57. [6] Ji XJ, Huang H, Zhu JG, et al.Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene[J]. Applied Microbiology & Biotechnology, 2010, 85(6):1751-1758. [7] De Mas C, Jansen NB, Tsao GT.Production of optically active 2, 3-butanediol by Bacillus polymyxa[J]. Biotechnology & Bioengineering, 1988, 31(4):366-377. [8] Ji X J, Huang H, Ouyang PK.Microbial 2, 3-butanediol production:a state-of-the-art review[J]. Biotechnology Advances, 2011, 29(3):351-364. [9] Zhang L, Yang Y, Sun J, et al.Microbialproduction of 2, 3-butanediol by a mutagenized strain of Serratia marcescens H30[J]. Bioresource Technology, 2010, 101(6):1961-1967. [10] Jansen NB, Tsao GT.Bioconversion of pentoses to 2, 3-butanediol by Klebsiella pneumonia[J]. Advances in Biochemical Engineering/Biotechnology, 1983, 27:85-99. [11] Jansen NB, Flickinger MC, Tsao GT.Production of 2, 3-butanediolfrom D-xylose by Klebsiella oxytoca ATCC 8724[J]. Biotechnology & Bioengineering, 1984, 26(4):362-369. [12] Ji XJ, Huang H, Du J, et al.Developmentof an industrial medium for economical 2, 3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca[J]. Bioresource Technology, 2009, 100(21):5214-5218. [13] Yan L, Zhang H, Chen J, et al.Dilutesul furicacid cyclespray flow-through pretreatmen to cornstover for enhancement of sugar recovery[J]. Bioresource Technology, 2009, 100(5):1803-1808. [14] Chandrankant P, BisariaVS. Simultaneous bioconversion of glucos and xylose to ethanol by Saccaromy cescerevisiae in the presence of xylose isomerase[J]. Applied Microbiology & Biotechnology, 2000, 53(3):30-309. [15] Perez J, Munoz-Dorado J, Rubia DLT, et al.Biodegradation and biologicalt-reatments of cellulose, hemicellulose and lignin:an overview[J]. International Microbiology, 2002, 5(2):53-63. [16] 张翠英, 肖冬光, 韩宁宁, 等. 木糖发酵高产2, 3-丁二醇菌株的选育[J]. 食品研究与开发, 2011, 32:168-170. [17] 肖冬光, 韩宁宁, 张翠英, 等. 木糖发酵产 2, 3-丁二醇培养基的优化[J]. 酿酒科技, 2010, 190(4):26-30. [18] 冯燕青, 夏黎明. Klebsiella oxytoca 发酵木糖生产2, 3-丁二醇的研究[J]. 林产化学与工业, 2009, 29(1):103-106. [19] Yu EK, Saddler JN.Enhanced production of 2, 3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic acid[J]. Applied & Environmental Microbiology, 1982, 44(4):777-784. [20] Yu EK, Saddler JN.Fed-batch approach to production of 2, 3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations[J]. Applied & Environmental Microbiology, 1983, 46(3):630-635. [21] Li R, Yu C, Li Y, et al.SOAP2:An improved μLtrafast tool for short read alignment[J]. Bioinformatics, 2009, 25(15):1966-1967. [22] Ferreira SLC, Bruns RE, Ferreira HS, et al.Box-Behnken design:An alternative for the optimization of analytical methods[J]. Analytica Chimica Acta, 2007, 597(2):179. [23] Anjum MF, Tasadduq I, Al-Sultan K.Response surface methodology:A neural network approach[J]. European Journal of Operational Research, 1997, 101(1):65-73. [24] 聂明, 李怀波, 万佳蓉, 等. 工业微生物遗传育种的研究进展[J]. 现代食品科技, 2005, 21(3):184-187. [25] Weidmann S, Magali M, Laurent J, et al.Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance[J]. International Journal of Food Microbiology, 2017, 247:18-23. [26] Amira D, Rania BS, Faical B, et al.Over-expression of a subunit E1 of a vacuolar H+-ATPase gene(Lm VHA-E1)cloned from the halophyte Lobularia maritima improves the tolerance of Arabidopsis thaliana to salt and osmotic stresses[J]. Environmental & Experimental Botany, 2017, 137:128-141. [27] Gao X, Jiang L, Zhu L, et al.Tailoring of global transcription sigma D factor by random mutagenesis to improve Escherichia coli tolerance towards low-pHs[J]. Journal of Biotechnology, 2016, 224:55-63. |