生物技术通报 ›› 2025, Vol. 41 ›› Issue (8): 255-266.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0013
• 研究报告 • 上一篇
康琴1(
), 汪霞1, 谌明洋1, 徐静天1, 陈诗兰1, 廖平杨1, 许文志2, 吴卫1, 徐东北1(
)
收稿日期:2025-01-08
出版日期:2025-08-26
发布日期:2025-08-14
通讯作者:
徐东北,男,博士,副教授,研究方向 :植物资源利用、植物逆境生物学与代谢调控;E-mail: xudongbei2006@126.com作者简介:康琴,女,硕士研究生,研究方向 :特用植物品质改良及逆境机制解析;E-mail: 1787482623@qq.com
基金资助:
KANG Qin1(
), WANG Xia1, SHEN Ming-yang1, XU Jing-tian1, CHEN Shi-lan1, LIAO Ping-yang1, XU Wen-zhi2, WU Wei1, XU Dong-bei1(
)
Received:2025-01-08
Published:2025-08-26
Online:2025-08-14
摘要:
目的 紫外(UV-B)受体UVR8在调控植物生长发育、响应逆境胁迫等过程中发挥关键作用。探究薄荷(Mentha canadensis L.)UV-B受体基因McUVR8的蛋白特性和表达特征,预测其互作蛋白,为后续探究McUVR8功能提供理论参考。 方法 通过RT-PCR技术获得McUVR8基因,利用多种生物信息学工具对其理化性质、蛋白结构和亚细胞定位、互作蛋白进行分析预测。利用RT-qPCR分析McUVR8的组织、叶序表达模式及其在不同激素、胁迫下的表达变化。 结果 McUVR8全长1 353 bp,编码450个氨基酸,在细胞核和细胞质中均有分布,具有保守的呈螺旋环状的RCC1核心结构域和C17、C27结构域,与同为唇形科的一串红(Salvia splendens)SsUVR8、迷幻鼠尾草(Salvia divinorum)SdBUR8和西班牙鼠尾草(Salvia hispanica)ShUVR8同源性较高。McUVR8在薄荷不同组织和叶序中均表达,并具有一定差异,其中在根中表达量最低,花中表达量最高,不同叶序中其表达在第一片叶中最高。此外,McUVR8基因在叶片和根中均响应MeJA、ABA以及干旱、NaCl和2种重金属和铝胁迫处理。最后,筛选并验证到McUVR8与McCOP1互作。 结论 McUVR8可能在调节薄荷的生长发育、响应激素或逆境信号中具有重要作用,并且其可能通过与COP1、WRKY等蛋白互作,参与调控薄荷次生代谢、逆境响应等过程。
康琴, 汪霞, 谌明洋, 徐静天, 陈诗兰, 廖平杨, 许文志, 吴卫, 徐东北. 薄荷UV-B受体基因McUVR8的克隆与表达分析[J]. 生物技术通报, 2025, 41(8): 255-266.
KANG Qin, WANG Xia, SHEN Ming-yang, XU Jing-tian, CHEN Shi-lan, LIAO Ping-yang, XU Wen-zhi, WU Wei, XU Dong-bei. Cloning and Expression Analysis of the UV-B Receptor Gene McUVR8 in Mentha canadensis L.[J]. Biotechnology Bulletin, 2025, 41(8): 255-266.
| 引物名称 Primer name | 引物序列 Primer sequence (5′‒3′) | 引物用途 Application |
|---|---|---|
| McUVR8-F | GAGAGAGATGGCCGACGAG | 基因克隆 |
| McUVR8-R | CTCAGATCCTCATTCTTTTTACGTC | |
| McUVR8-GFP-F | CGGTACCCGGGGATCCATGGCCGACGAGGGGCA | 蛋白定位 |
| McUVR8-GFP-R | TGCTCACCATGTCGACGATCCTCATTCTTTTTACGTCAG | |
| qMcUVR8-F | GGCAGTGACGACTGATGGAA | 表达分析 |
| qMcUVR8-R | GCTGACCATTGGTACCCCTT | |
| β-actin-F | TGGAGAAAATATGGACAGAAAGTTG | 表达分析 |
| β-actin-R | CAGAAGAAGTTACTGAGTTGGGC | |
| BD-McUVR-F | GGAGGACCTGCATATGATGGCCGACGAGGGGCA | 蛋白互作 |
| BD-McUVR-R | GGATCCCCGGGAATTCTCAGATCCTCATTCTTTTTACGT |
表1 本研究所使用的引物信息
Table 1 Information of primers used in this study
| 引物名称 Primer name | 引物序列 Primer sequence (5′‒3′) | 引物用途 Application |
|---|---|---|
| McUVR8-F | GAGAGAGATGGCCGACGAG | 基因克隆 |
| McUVR8-R | CTCAGATCCTCATTCTTTTTACGTC | |
| McUVR8-GFP-F | CGGTACCCGGGGATCCATGGCCGACGAGGGGCA | 蛋白定位 |
| McUVR8-GFP-R | TGCTCACCATGTCGACGATCCTCATTCTTTTTACGTCAG | |
| qMcUVR8-F | GGCAGTGACGACTGATGGAA | 表达分析 |
| qMcUVR8-R | GCTGACCATTGGTACCCCTT | |
| β-actin-F | TGGAGAAAATATGGACAGAAAGTTG | 表达分析 |
| β-actin-R | CAGAAGAAGTTACTGAGTTGGGC | |
| BD-McUVR-F | GGAGGACCTGCATATGATGGCCGACGAGGGGCA | 蛋白互作 |
| BD-McUVR-R | GGATCCCCGGGAATTCTCAGATCCTCATTCTTTTTACGT |
图1 McUVR8克隆及蛋白结构分析A:McUVR8的PCR扩增(红色方框和箭头指示目的基因条带,M:DNA-marker);B:McUVR8的二级结构预测(蓝色:α螺旋;紫色:延伸链;橙色:随机卷曲);C:McUVR8的三级结构预测(红色:延伸链;蓝色:随机卷曲;数字1‒7表示7个WD40组成的片层结构)
Fig. 1 McUVR8 cloning and protein structure analysisA: PCR amplification of McUVR8 (Red boxes and arrows denote the bands corresponding to the target genes. M: DNA-marker). B: Secondary structure prediction of McUVR8 (Blue: α-helix; purple: extended strand; orange: random coil). C: Tertiary structure prediction of McUVR8 (Red: extended strand; blue: random coil. Number 1‒7 indicate the lamellar structure consisting of seven WD40)
图2 McUVR8氨基酸序列与其他植物UVR8蛋白的氨基酸序列比对蓝色垂直线表示7个WD40结构;绿色下划线条所示部分代表RCC1核心结构域,红色下划线条所示部分分别代表C27结构域和C17结构域
Fig. 2 Alignment of the amino acid sequences between McUVR8 and other plant UVR8 proteinsThe blue vertical lines indicate the seven WD40 structures; the green underline indicates the core structural domain of RCC1, and the red underlines indicate the C27 and C17 domains, respectively
图3 不同植物UVR8蛋白的motif分析薄荷McUVR8与其他19个物种中同源UVR8蛋白的保守motif分析,所列不同物种与图2中的19个物种一致。图片下方标尺表示氨基酸序列位置
Fig. 3 Motif analysis of UVR8 protein in different plantsConserved motif analysis of M. canadensis McUVR8 with homologous UVR8 proteins from 19 other species, the different species listed correspond to the 19 species in Fig. 2. The scale below this figure indicates amino acid sequence positions
图4 不同植物的UVR8基因的系统进化树分析紫色圆圈表示薄荷McUVR8,绿色圆圈表示其他19个同源UVR8基因
Fig. 4 Phylogenetic tree analysis of UVR8 gene in different plantsPurple circles indicate M. canadensisMcUVR8, and green circles indicate the other 19 homologous UVR8 gene
图6 McUVR8基因的组织和叶序表达分析A:McUVR8在薄荷根、茎、叶、花、蕾、茎尖中的表达;B:McUVR8在薄荷不同叶片中的表达,叶1-叶8:形态学从上到下的第1至第8片叶子;数据为3个生物学重复的平均值(mean)± SE,方差分析采用邓肯检验,小写字母代表0.05水平上差异显著,下同
Fig. 6 Tissue and phyllotaxis expression analysis of McUVR8 geneA: Expressions of McUVR8 in the root, stem, leaf, flower, bud, apical shoot of M. canadensis. B: Relative expressions of McUVR8 in the leaves at different positions. Leaf 1-leaf 8: The first to eighth leaf morphologically from top to bottom. Data are mean ± SE of 3 biological replicates, ANOVA is performed using Duncan's test, lowercase letters indicate significant differences at the 0.05 level, the same below
图7 McUVR8基因在叶片和根中响应激素和胁迫处理McUVR8在MeJA(A)、ABA(C)、干旱(E)、NaCl(G)处理的薄荷叶片中的表达情况;McUVR8在MeJA(B)、ABA(D)、干旱(F)、NaCl(H)处理的薄荷根中的表达情况
Fig. 7 McUVR8 gene in the leaves and roots in response to hormone and stress treatmentsExpression analysis of McUVR8 in the leaves of M. canadensis treated with MeJA (A), ABA (C), drought (E), and NaCl (G). Expression analysis of McUVR8 in the roots of M. canadensis treated with MeJA (B), ABA (D), drought (F), and NaCl (H)
图 8 McUVR8基因在叶片和根中响应重金属或铝胁迫的表达模式McUVR8在CdCl2(A)、CuCl2(C)、AlCl3(E)处理的薄荷叶片中的表达情况;McUVR8在CdCl2(B)、CuCl2(D)、AlCl3(F)处理的薄荷根中的表达情况
Fig. 8 Expression profiles of McUVR8 gene in the leaves and roots in response to heavy metal or aluminum stressExpression analysis of McUVR8 in the leaves of M. canadensis treated with CdCl2 (A), CuCl2 (C), and AlCl3(E). Expression analysis of McUVR8 in the roots of M. canadensis treated with CdCl2 (B), CuCl2 (D), and AlCl3 (F)
| [1] | Soni S, Jha AB, Dubey RS, et al. Application of nanoparticles for enhanced UV-B stress tolerance in plants [J]. Plant Nano Biol, 2022, 2: 100014. |
| [2] | 钱珊珊, 侯学文. 植物UV-B生理效应的分子机制研究进展 [J]. 植物生理学报, 2011, 47(11): 1039-1046. |
| Qian SS, Hou XW. Progress of molecular mechanisms of plant UV-B physiological effects [J]. Plant Physiol J, 2011, 47(11): 1039-1046. | |
| [3] | Dai YJ, Li MH, Li HH, et al. Phytohormone-regulated UV-B photomorphogenesis and acclimation [J]. Environ Exp Bot, 2024, 224: 105830. |
| [4] | Dolzhenko Y, Bertea CM, Occhipinti A, et al. UV-B modulates the interplay between terpenoids and flavonoids in peppermint (Mentha x piperita L.) [J]. J Photochem Photobiol B, 2010, 100(2): 67-75. |
| [5] | 吴能表, 罗红丽, 马红群, 等. UV-B辐射对薄荷药用成分质量分数的影响 [J]. 西南大学学报: 自然科学版, 2012, 34(6): 1-5. |
| Wu NB, Luo HL, Ma HQ, et al. Effects of enhanced UV-B radiation on amino acid and secondary metabolite contents in Mentha piperita L [J]. J Southwest Univ Nat Sci Ed, 2012, 34(6): 1-5. | |
| [6] | Jiao J, Xu XJ, Lu Y, et al. Identification of genes associated with biosynthesis of bioactive flavonoids and taxoids in Taxus cuspidata Sieb. et Zucc. plantlets exposed to UV-B radiation [J]. Gene, 2022, 823: 146384. |
| [7] | Kliebenstein DJ, Lim JE, Landry LG, et al. Arabidopsis UVR8 regulates ultraviolet-B signal transduction and tolerance and contains sequence similarity to human regulator of chromatin condensation 1 [J]. Plant Physiol, 2002, 130(1): 234-243. |
| [8] | 王丽霞. 植物紫外光受体UVR8介导UV-B信号转导的分子机制研究 [D]. 武汉: 华中农业大学, 2023. |
| Wang LX. Molecular mechanism of UV-B signal transduction mediated by plant ultraviolet receptor UVR8 [D]. Wuhan: Huazhong Agricultural University, 2023. | |
| [9] | Lin L, Dong HX, Yang GQ, et al. The C-terminal 17 amino acids of the photoreceptor UVR8 is involved in the fine-tuning of UV-B signaling [J]. J Integr Plant Biol, 2020, 62(9): 1327-1340. |
| [10] | Wang LX, Wang YD, Chang HF, et al. RUP2 facilitates UVR8 redimerization via two interfaces [J]. Plant Commun, 2023, 4(1): 100428. |
| [11] | Wu D, Hu Q, Yan Z, et al. Structural basis of ultraviolet-B perception by UVR8 [J]. Nature, 2012, 484(7393): 214-219. |
| [12] | Li C, Du JC, Xu HN, et al. UVR8-TCP4-LOX2 module regulates UV-B tolerance in Arabidopsis [J]. J Integr Plant Biol, 2024, 66(5): 897-908. |
| [13] | Fernández MB, Lamattina L, Cassia R. Functional analysis of the UVR8 photoreceptor from the monocotyledonous Zea mays [J]. Plant Growth Regul, 2020, 92(2): 307-318. |
| [14] | Liu W, Jenkins GI. Recent advances in UV-B signalling: interaction of proteins with the UVR8 photoreceptor [J]. J Exp Bot, 2025, 76(3): 873-881. |
| [15] | Fang F, Lin L, Zhang QW, et al. Mechanisms of UV-B light-induced photoreceptor UVR8 nuclear localization dynamics [J]. New Phytol, 2022, 236(5): 1824-1837. |
| [16] | Liang T, Yang Y, Liu HT. Signal transduction mediated by the plant UV-B photoreceptor UVR8 [J]. New Phytol, 2019, 221(3): 1247-1252. |
| [17] | Yang Y, Liang T, Zhang LB, et al. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis [J]. Nat Plants, 2018, 4(2): 98-107. |
| [18] | Yang Y, Zhang LB, Chen P, et al. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development [J]. EMBO J, 2020, 39(2): e101928. |
| [19] | 杨睿, 陈炫好, 李晋, 等. 薄荷化学成分及药理活性研究进展 [J]. 天津中医药大学学报, 2022, 41(1): 4-13. |
| Yang R, Chen XH, Li J, et al. Research development of Menthae Haplocalycis Herba on chemical composition and pharmacological activity [J]. J Tianjin Univ Tradit Chin Med, 2022, 41(1): 4-13. | |
| [20] | Li HZ, Yang L, Bai JQ, et al. The complete chloroplast genome sequence of Mentha canadensis (Labiatae), a traditional Chinese herbal medicine [J]. Mitochondrial DNA B Resour, 2019, 5(1): 55-56. |
| [21] | 于红卫. 药食同源——山茱萸 [J]. 河南农业, 2024(15): 2. |
| Yu HW. The homology of medicine and food-Cornus officinalis [J]. Agric Henan, 2024(15): 2. | |
| [22] | Zhao H, Ren S, Yang H, et al. Peppermint essential oil: its phytochemistry, biological activity, pharmacological effect and application [J]. Biomed Pharmacother, 2022, 154: 113559. |
| [23] | An X, Wan JQ, Jiang H, et al. Transcriptome analysis of transcription factors and enzymes involved in monoterpenoid biosynthesis in different chemotypes of Mentha haplocalyx Briq [J]. PeerJ, 2023, 11: e14914. |
| [24] | 李吉莹, 黄凤娇. 基于中药材种植中存在的问题及解决方法探析 [J]. 农业开发与装备, 2024(6): 83-85. |
| Li JY, Huang FJ. Based on the problems and solutions in the cultivation of Chinese herbal medicines [J]. Agric Dev Equip, 2024(6): 83-85. | |
| [25] | 王小艳. 中药材种植中存在的问题及解决方法探析 [J]. 农业技术与装备, 2021(8): 61-62. |
| Wang XY. Problems and solutions in the planting of traditional Chinese medicine [J]. Agric Technol Equip, 2021(8): 61-62. | |
| [26] | 杜选香, 王自梁, 杨碧娟, 等. 中药材重金属超标概况 [J]. 云南民族大学学报: 自然科学版, 2025, 34(3): 303-312. |
| Du XX, Wang ZL, Yang BJ, et al. General situation of heavy metals exceeding the standard in Chinese herbal medicines [J]. China Ind Econ, 2025, 34(3): 303-312. | |
| [27] | 王福, 陈士林, 刘友平, 等. 我国中药材种植产业进展与展望 [J]. 中国现代中药, 2023, 25(6): 1163-1171. |
| Wang F, Chen SL, Liu YP, et al. Advances and prospects of Chinese herbal medicine planting industry in China [J]. Mod Chin Med, 2023, 25(6): 1163-1171. | |
| [28] | 康琴, 唐伟林, 吴双玙, 等. 薄荷Ca2+传感器基因McCBL4的克隆及表达模式分析 [J]. 西南农业学报, 2024, 37(11): 2381-2391. |
| Kang Q, Tang WL, Wu SY, et al. Cloning and expression pattern analysis of Ca2+ sensor gene McCBL4 in Mentha canadensis L [J]. Southwest China J Agric Sci, 2024, 37(11): 2381-2391. | |
| [29] | Xu DB, Gao SQ, Ma YN, et al. The G-protein β subunit AGB1 promotes hypocotyl elongation through inhibiting transcription activation function of BBX21 in Arabidopsis [J]. Mol Plant, 2017, 10(9): 1206-1223. |
| [30] | Ahkami A, Johnson SR, Srividya N, et al. Multiple levels of regulation determine monoterpenoid essential oil compositional variation in the mint family [J]. Mol Plant, 2015, 8(1): 188-191. |
| [31] | Homma F, Huang J, van der Hoorn RAL. AlphaFold-Multimer predicts cross-Kingdom interactions at the plant-pathogen interface [J]. Nat Commun, 2023, 14(1): 6040. |
| [32] | 钱崇祯. 拟南芥UV-B光受体亚细胞定位与功能研究 [D]. 厦门: 厦门大学, 2019. |
| Qian CZ. Subcellular localization and function of UV-B photoreceptors in Arabidopsis thaliana [D]. Xiamen: Xiamen University, 2019. | |
| [33] | Tossi VE, Regalado JJ, Iannicelli J, et al. Beyond Arabidopsis: differential UV-B response mediated by UVR8 in diverse species [J]. Front Plant Sci, 2019, 10: 780. |
| [34] | Mao K, Wang LN, Li YY, et al. Molecular cloning and functional analysis of UV RESISTANCE LOCUS 8 (PeUVR8) from Populus euphratica [J]. PLoS One, 2015, 10(7): e0132390. |
| [35] | Li XY, Ma MH, Shao WX, et al. Molecular cloning and functional analysis of a UV-B photoreceptor gene, BpUVR8 (UV Resistance Locus 8), from birch and its role in ABA response [J]. Plant Sci, 2018, 274: 294-308. |
| [36] | 李晓一, 詹亚光, 娄晓瑞, 等. 白桦BpUVR8基因的序列与表达模式分析 [J]. 植物生理学报, 2016, 52(5): 685-692. |
| Li XY, Zhan YG, Lou XR, et al. The sequence and expression analysis of BpUVR8 gene in birch [J]. Plant Physiol J, 2016, 52(5): 685-692. | |
| [37] | Li HR, Li YX, Deng H, et al. Tomato UV-B receptor SlUVR8 mediates plant acclimation to UV-B radiation and enhances fruit chloroplast development via regulating SlGLK2 [J]. Sci Rep, 2018, 8(1): 6097. |
| [38] | 向花, 吕桂珍, 李韶山. UV-B预处理对拟南芥uvr8-2突变体响应干旱胁迫的影响 [J]. 华南师范大学学报: 自然科学版, 2020, 52(6): 67-73. |
| Xiang H, Lü GZ, Li SS. The effect of UV-B pretreatment on the drought response of Arabidopsis uvr8-2 mutants [J]. J South China Norm Univ Nat Sci Ed, 2020, 52(6): 67-73. | |
| [39] | Zhang N, Xu K, Liu SY, et al. RNA polymerase III-dependent BoNR8 and AtR8 lncRNAs contribute to hypocotyl elongation in response to light and abscisic acid [J]. Plant Cell Physiol, 2023, 64(6): 646-659. |
| [40] | Fasano R, Gonzalez N, Tosco A, et al. Role of Arabidopsis UV RESISTANCE LOCUS 8 in plant growth reduction under osmotic stress and low levels of UV-B [J]. Mol Plant, 2014, 7(5): 773-791. |
| [41] | Zeng DS, Lv JQ, Li X, et al. The Arabidopsis blue-light photoreceptor CRY2 is active in darkness to inhibit root growth [J]. Cell, 2025, 188(1): 60-76.e20. |
| [42] | García-Sánchez F, Simón-Grao S, Martínez-Nicolás JJ, et al. Multiple stresses occurring with boron toxicity and deficiency in plants [J]. J Hazard Mater, 2020, 397: 122713. |
| [43] | Najmi A, Albratty M, Al-Rajab AJ, et al. Heavy metal contamination in leafy vegetables grown in jazan region of Saudi Arabia: assessment of possible human health hazards [J]. Int J Environ Res Public Health, 2023, 20(4): 2984. |
| [44] | 吴嘉煜, 米楠. 重金属对植物抗氧化酶影响研究进展 [J]. 浙江农业科学, 2022, 63(6): 1177-1181, 1304. |
| Wu JY, Mi N. Effect of heavy metals on antioxidant enzymes in plants [J]. J Zhejiang Agric Sci, 2022, 63(6): 1177-1181, 1304. | |
| [45] | Yin RH, Arongaus AB, Binkert M, et al. Two distinct domains of the UVR8 photoreceptor interact with COP1 to initiate UV-B signaling in Arabidopsis [J]. Plant Cell, 2015, 27(1): 202-213. |
| [46] | 李国良, 张鸿, 许泳清, 等. 植物紫外光受体UVR8的研究进展 [J]. 植物生理学报, 2015, 51(11): 1809-1814. |
| Li GL, Zhang H, Xu YQ, et al. Research progress in plant photoreceptor UVR8 [J]. Plant Physiol J, 2015, 51(11): 1809-1814. | |
| [47] | 陈慧泽, 牛靖蓉, 韩榕. 植物紫外光B受体UVR8的信号转导途径 [J]. 植物生理学报, 2021, 57(6): 1179-1188. |
| Chen HZ, Niu JR, Han R. Signal transduction pathways of plant ultraviolet B receptor UVR8 [J]. Plant Physiol J, 2021, 57(6): 1179-1188. | |
| [48] | Abramson J, Adler J, Dunger J, et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3 [J]. Nature, 2024, 630(8016): 493-500. |
| [49] | Wang YD, Wang LX, Guan ZY, et al. Structural insight into UV-B-activated UVR8 bound to COP1 [J]. Sci Adv, 2022, 8(16): eabn3337. |
| [50] | Toby GG, Golemis EA. Using the yeast interaction trap and other two-hybrid-based approaches to study protein-protein interactions [J]. Methods, 2001, 24(3): 201-217. |
| [51] | He XH, Li JR, Shen SY, et al. AlphaFold3 versus experimental structures: assessment of the accuracy in ligand-bound G protein-coupled receptors [J]. Acta Pharmacol Sin, 2025, 46(4): 1111-1122. |
| [1] | 李开杰, 吴瑶, 李丹丹. 红花CtbHLH128基因克隆及调控干旱胁迫应答功能研究[J]. 生物技术通报, 2025, 41(8): 234-241. |
| [2] | 曾丹, 黄园, 王健, 张艳, 刘庆霞, 谷荣辉, 孙庆文, 陈宏宇. 铁皮石斛bZIP转录因子家族全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(8): 197-210. |
| [3] | 黄诗宇, 田姗姗, 杨天为, 高曼熔, 张尚文. 赤苍藤WRI1基因家族的全基因组鉴定及表达模式分析[J]. 生物技术通报, 2025, 41(8): 242-254. |
| [4] | 王从欢, 伍国强, 魏明. 植物CBL调控逆境胁迫响应的作用机制[J]. 生物技术通报, 2025, 41(7): 1-16. |
| [5] | 黄丹丹, 吴云翼, 邹建华, 俞婷, 朱炎辉, 杨梅宏, 董文丽, 高冬丽. 马铃薯StPTST2a基因的克隆及互作分析[J]. 生物技术通报, 2025, 41(7): 172-180. |
| [6] | 王芳, 乔帅, 宋伟, 崔鹏娟, 廖安忠, 谭文芳, 杨松涛. 甘薯IbNRT2基因家族全基因组鉴定和表达分析[J]. 生物技术通报, 2025, 41(7): 193-204. |
| [7] | 魏雨佳, 李岩, 康语涵, 弓晓楠, 杜敏, 涂岚, 石鹏, 于子涵, 孙彦, 张昆. 白颖苔草CrMYB4基因的克隆和表达分析[J]. 生物技术通报, 2025, 41(7): 248-260. |
| [8] | 许慧珍, SHANTWANA Ghimire, RAJU Kharel, 岳云, 司怀军, 唐勋. 马铃薯SUMO E3连接酶基因家族分析及StSIZ1基因的克隆与表达模式分析[J]. 生物技术通报, 2025, 41(6): 119-129. |
| [9] | 裴景琪, 赵梦然, 黄晨阳, 邬向丽. 一个影响糙皮侧耳生长发育的功能基因的发现与验证[J]. 生物技术通报, 2025, 41(6): 327-334. |
| [10] | 刘鑫, 王嘉雯, 李进伟, 牟策, 杨盼盼, 明军, 徐雷锋. 兰州百合三个LdBBXs基因的克隆与表达分析[J]. 生物技术通报, 2025, 41(5): 186-196. |
| [11] | 赵婧, 郭茜, 李睿琦, 雷滢炀, 岳爱琴, 赵晋忠, 殷丛丛, 杜维俊, 牛景萍. 大豆GmGST基因簇基因序列分析及诱导表达分析[J]. 生物技术通报, 2025, 41(5): 129-140. |
| [12] | 吴娅, 姚润, 杨含婷, 刘微, 杨帅, 宋驰, 陈士林. 凤梨薄荷SDR基因家族全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(5): 175-185. |
| [13] | 王天禧, 杨炳松, 潘荣君, 盖文贤, 梁美霞. 苹果PLATZ基因家族鉴定及MdPLATZ9基因功能研究[J]. 生物技术通报, 2025, 41(4): 176-187. |
| [14] | 宋佳怡, 苏芸丽, 郑兴艳, 夏文念, 杨冬梅, 胡慧贞. 金鱼草Expansin基因家族鉴定及其抗核盘菌相关基因筛选[J]. 生物技术通报, 2025, 41(4): 227-242. |
| [15] | 班秋艳, 赵鑫月, 迟文静, 黎俊生, 王琼, 夏瑶, 梁丽云, 贺巍, 李叶云, 赵广山. 茶树光敏色素互作因子CsPIF3a的克隆及其与光温逆境的响应[J]. 生物技术通报, 2025, 41(4): 256-265. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||