生物技术通报 ›› 2025, Vol. 41 ›› Issue (4): 227-242.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0918

• 研究报告 • 上一篇    

金鱼草Expansin基因家族鉴定及其抗核盘菌相关基因筛选

宋佳怡(), 苏芸丽, 郑兴艳, 夏文念, 杨冬梅, 胡慧贞()   

  1. 西南林业大学园林园艺学院 云南省功能性花卉资源及产业化技术工程研究中心,昆明 650224
  • 收稿日期:2024-09-21 出版日期:2025-04-26 发布日期:2025-04-25
  • 通讯作者: 胡慧贞,女,博士,副研究员,研究方向 :植物细胞壁介导的植物抗性和生长发育机理;E-mail: Jenny_8729@163.com
  • 作者简介:宋佳怡,女,硕士研究生,研究方向 :植物抗核盘菌机理;E-mail: siklib-91@swfu.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目(31901571);云南省基础研究专项面上项目(202401AT070274)

Identification of the Snapdragon Expansin Gene Family and Screening of Its Genes Related to Resistance to Sclerotinia sclerotiorum

SONG Jia-yi(), SU Yun-li, ZHENG Xing-yan, XIA Wen-nian, YANG Dong-mei, HU Hui-zhen()   

  1. Yunnan Province Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming 650224
  • Received:2024-09-21 Published:2025-04-26 Online:2025-04-25

摘要:

目的 探究金鱼草(Antirrhinum majus)扩展蛋白(expansin, EXPs)在响应核盘菌(Sclerotinia sclerotiorum)侵染中的作用,并鉴定金鱼草EXPs基因家族,挖掘出抗核盘菌的关键候选基因,为进一步探究金鱼草EXPs基因家族的生物学功能提供基础。 方法 基于金鱼草全基因组数据,利用生物信息学方法分析该家族蛋白的理化性质、二三级结构、基因结构、蛋白质结构域、系统进化、共线性以及启动子顺式作用元件。利用金鱼草抗感材料转录组测序(RNA-seq)及实时荧光定量PCR (quantitative real-time PCR, RT-qPCR)检测AmEXPs基因在金鱼草响应核盘菌侵染过程中的表达模式。确定候选基因并构建候选基因的超表达载体,并瞬时转化入本氏烟草进行抗性初筛。 结果 金鱼草中共鉴定到32个AmEXPs,均具有保守结构域DPBB-1和Pollen allerg1,分为4个亚族(EXPA、EXPB、EXLA及EXLB),编码211‒297个氨基酸,蛋白分子量22 018.69‒31 787.97 Da,等电点5.01‒9.83;各亚族基因间有高度相似的结构和保守基序;每个基因的启动子都具有与激素或胁迫相关的顺式作用元件。根据表达模式挖掘出了10个候选基因,进一步对这10个候选基因进行超表达载体构建并瞬时转化入本氏烟草进行抗性初筛,发现与对照相比,AmEXP13AmEXLB1基因可显著增强本氏烟草对核盘菌的抗性,而AmEXPA17、AmEXPA21、AmEXPA9AmEXPA16基因则使本氏烟草表现得更易感,AmEXLB2、AmEXPB1、AmEXPA2AmEXPA12基因则无明显差异。 结论 从金鱼草全基因组中鉴定出32个EXPs基因家族成员,其中6个EXPs基因响应核盘菌抗性,AmEXPA13AmEXLB1这2个基因是正向介导抗病的关键候选基因,AmEXPA17、AmEXPA21、AmEXPA9AmEXPA16这4个基因是负向介导抗病的关键候选基因。

关键词: 金鱼草, Expansin基因家族, 表达模式, 核盘菌抗性, 抗性初步筛选

Abstract:

Objective Investigate the role of expansin (EXPs) of snapdragon (Antirrhinum majus) in response to Sclerotinia sclerotiorum infection, identify the EXPs gene family of snapdragon, and mine the key candidate genes against S. sclerotiorum. It provides a basis for further investigation of the biological function of the EXPs gene family in snapdragon. Method Based on the whole snapdragon genome data, bioinformatics methods were used to analyze the physicochemical properties, secondary and tertiary structures, gene structure, protein domains, phylogenetic evolution, collinearity relationships and cis-acting elements of the EXPs family proteins in snapdragon. The transcriptome sequencing (RNA-seq) and quantitative real-time PCR (RT-qPCR) were applied to examine the expression patterns of AmEXPs during S. sclerotiorum infection while using resistant and susceptible A. majus materials. Candidate genes were identified. These genes were further investigated by constructing overexpression vectors and transiently transformed into Nicotiana benthamiana for preliminary resistance screening. Result Thirty-two AmEXPs were identified in the snapdragon, all of them have conserved structural domains DPBB-1 and Pollen allerg1, and they are divided into four subfamilies (EXPA, EXPB, EXLA, and EXLB). Thy encoded 211-297 amino acids, with molecular weights of 22 018.69-31 787.97 Da, and isoelectric points ranging from 5.01-9.83. There are highly similar structures and conserved motifs among the genes of various subfamilies. Each gene's promoter contains cis-acting elements related to hormones or stress. Ten candidate genes were identified according to their expression patterns. These genes were further investigated by constructing overexpression vectors and transiently transformed into N. benthamiana for preliminary resistance screening. It was found that AmEXP13 and AmEXLB1 genes significantly enhanced the resistance of N.benthamiana to S. sclerotiorum compared to the control, while AmEXPA17, AmEXPA21, AmEXPA9, and AmEXPA16 genes made N. benthamiana more susceptible, and AmEXLB2, AmEXPB1, AmEXPA2, and AmEXPA12 genes showed no significant differences. Conclusion Thirty-two EXPs gene family members were identified from the snapdragon genome, among which six EXPs genes respond to resistance to S. sclerotiorum. AmEXPA13 and AmEXLB1 are the key candidate genes for positive regulation of resistance, while AmEXPA17, AmEXPA21, AmEXPA9, and AmEXPA16 are the key candidate genes for negative regulation of resistance.

Key words: Antirrhinum majus, Expansin gene family, expression patterns, resistance to Sclerotinia sclerotiorum, preliminary resistance screening