生物技术通报 ›› 2025, Vol. 41 ›› Issue (8): 65-73.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0339
邓美壁1(
), 严浪2,3(
), 詹志田4,5, 朱敏6, 和玉兵2,3(
)
收稿日期:2025-03-31
出版日期:2025-08-26
发布日期:2025-07-17
通讯作者:
和玉兵,男,博士,副教授,研究方向 :基因组编辑技术开发与创新利用;E-mail: heyubing@caas.cn作者简介:邓美壁,男,硕士研究生,研究方向 :基因组编辑技术开发与创新利用;E-mail: 2942331446@qq.com基金资助:
DENG Mei-bi1(
), YAN Lang2,3(
), ZHAN Zhi-tian4,5, ZHU Min6, HE Yu-bing2,3(
)
Received:2025-03-31
Published:2025-08-26
Online:2025-07-17
摘要:
目的 开发一种RUBY辅助的可视化筛选转基因植株并有效指示基因编辑发生的CRISPR/Cas9基因编辑载体GCR。 方法 将RUBY与Cas9/gRNA的表达盒偶联到一起得到GCR载体,使用水稻的OsAGO2、OsAGO3、OsAGO7为靶基因,分别构建多基因编辑载体GCR-237-1和多基因编辑载体GCR-237-2,以水稻ZH11(Zhonghua 11)为受体材料进行农杆菌介导水稻遗传转化获得基因编辑植株。 结果 GCR-237-1和GCR-237-2转化入水稻愈伤后,RUBY标记可以有效指示转基因阳性事件,并且稳定转化得到的红色植株的靶基因被高效编辑。 结论 利用基因编辑载体GCR可有效编辑水稻基因且通过肉眼直观观察即可有效指示转基因乃至基因编辑植株。
邓美壁, 严浪, 詹志田, 朱敏, 和玉兵. RUBY辅助的水稻高效CRISPR基因编辑[J]. 生物技术通报, 2025, 41(8): 65-73.
DENG Mei-bi, YAN Lang, ZHAN Zhi-tian, ZHU Min, HE Yu-bing. Efficient CRISPR Gene Editing in Rice Assisted by RUBY[J]. Biotechnology Bulletin, 2025, 41(8): 65-73.
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 用途 Function |
|---|---|---|
| DetecOligo1 | GTAGGTCTCCTGCAACCAGCAGCGAGGAGGATCCGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-1载体 |
| DetecOligo2 | ACGGGTCTCATCGTGGTCCGTTTGCACCAGCCGGG | 构建GCR-237-1载体 |
| DetecOligo3 | GTAGGTCTCCACGACGAACTCGGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-1载体 |
| DetecOligo4 | ACGGGTCTCAAAAACAGGGGCTCAATGTGGAAGCATGCACCAGCCGGG | 构建GCR-237-1载体 |
| DetecOligo5 | GTAGGTCTCCTGCACTTATCTGCGAGACGCAGCTGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-2载体 |
| DetecOligo6 | ACGGGTCTCACTTGCAGATATCTGCACCAGCCGGG | 构建GCR-237-2载体 |
| DetecOligo7 | GTAGGTCTCCCAAGGAGCTCATGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-2载体 |
| DetecOligo8 | ACGGGTCTCAAAAACAGCTTTAATTTTGGGGGCAATGCACCAGCCGGG | 构建GCR-237-2载体 |
| DetecOligo9 | CGTGGCGGATTCTCCAAGC | 菌检(大肠杆菌和农杆菌) |
| DetecOligo10 | ACCTTGAACTTCTTTGAGGGCAC | 菌检(大肠杆菌和农杆菌) |
| DetecOligo11 | CTCAACCCCAAGGCTAACAG | 植株转基因阳性鉴定 |
| DetecOligo12 | ACCTCAGGGCATCGGAAC | 植株转基因阳性鉴定 |
| DetecOligo13 | AGCTTGAGATCCTCAACCATGAAT | 植株转基因阳性鉴定 |
| DetecOligo14 | TTCACACAGGAAACAGCTATGAC | 植株转基因阳性鉴定 |
| DetecOligo15 | CCACTGCTCTCTTCGATCCC | 靶点扩增 |
| DetecOligo16 | GGTGCAGGTGGTTGTACTCT | 靶点扩增 |
| DetecOligo17 | TTTCCCGGTGGAAGAGGAGT | 靶点扩增 |
| DetecOligo18 | GTGCAAAATCGGCATCCCTC | 靶点扩增 |
| DetecOligo19 | CGGACAGGTTAAAGCGGTGT | 靶点扩增 |
| DetecOligo20 | AATGAGCTACAAGGCAAGGG | 靶点扩增 |
| DetecOligo21 | TGCAGATTCTGGGCAGTACG | 靶点扩增 |
| DetecOligo22 | TTCTCGAACACGCCGATGAG | 靶点扩增 |
| DetecOligo23 | AGACCCAGTGCTTCTTGAGC | 靶点扩增 |
| DetecOligo24 | TGTGGCTGCACAGGTAGAAG | 靶点扩增 |
| DetecOligo25 | TGCAAGAAGGTATGGTTCTTCAT | 靶点扩增 |
| DetecOligo26 | GTGCCTCCTCTCCATGACAC | 靶点扩增 |
表1 实验所用引物汇总
Table 1 Summary of primers used in this experiment
引物名称 Primer name | 引物序列 Primer sequence (5′-3′) | 用途 Function |
|---|---|---|
| DetecOligo1 | GTAGGTCTCCTGCAACCAGCAGCGAGGAGGATCCGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-1载体 |
| DetecOligo2 | ACGGGTCTCATCGTGGTCCGTTTGCACCAGCCGGG | 构建GCR-237-1载体 |
| DetecOligo3 | GTAGGTCTCCACGACGAACTCGGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-1载体 |
| DetecOligo4 | ACGGGTCTCAAAAACAGGGGCTCAATGTGGAAGCATGCACCAGCCGGG | 构建GCR-237-1载体 |
| DetecOligo5 | GTAGGTCTCCTGCACTTATCTGCGAGACGCAGCTGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-2载体 |
| DetecOligo6 | ACGGGTCTCACTTGCAGATATCTGCACCAGCCGGG | 构建GCR-237-2载体 |
| DetecOligo7 | GTAGGTCTCCCAAGGAGCTCATGTTTTAGAGCTAGAAATAGCAAG | 构建GCR-237-2载体 |
| DetecOligo8 | ACGGGTCTCAAAAACAGCTTTAATTTTGGGGGCAATGCACCAGCCGGG | 构建GCR-237-2载体 |
| DetecOligo9 | CGTGGCGGATTCTCCAAGC | 菌检(大肠杆菌和农杆菌) |
| DetecOligo10 | ACCTTGAACTTCTTTGAGGGCAC | 菌检(大肠杆菌和农杆菌) |
| DetecOligo11 | CTCAACCCCAAGGCTAACAG | 植株转基因阳性鉴定 |
| DetecOligo12 | ACCTCAGGGCATCGGAAC | 植株转基因阳性鉴定 |
| DetecOligo13 | AGCTTGAGATCCTCAACCATGAAT | 植株转基因阳性鉴定 |
| DetecOligo14 | TTCACACAGGAAACAGCTATGAC | 植株转基因阳性鉴定 |
| DetecOligo15 | CCACTGCTCTCTTCGATCCC | 靶点扩增 |
| DetecOligo16 | GGTGCAGGTGGTTGTACTCT | 靶点扩增 |
| DetecOligo17 | TTTCCCGGTGGAAGAGGAGT | 靶点扩增 |
| DetecOligo18 | GTGCAAAATCGGCATCCCTC | 靶点扩增 |
| DetecOligo19 | CGGACAGGTTAAAGCGGTGT | 靶点扩增 |
| DetecOligo20 | AATGAGCTACAAGGCAAGGG | 靶点扩增 |
| DetecOligo21 | TGCAGATTCTGGGCAGTACG | 靶点扩增 |
| DetecOligo22 | TTCTCGAACACGCCGATGAG | 靶点扩增 |
| DetecOligo23 | AGACCCAGTGCTTCTTGAGC | 靶点扩增 |
| DetecOligo24 | TGTGGCTGCACAGGTAGAAG | 靶点扩增 |
| DetecOligo25 | TGCAAGAAGGTATGGTTCTTCAT | 靶点扩增 |
| DetecOligo26 | GTGCCTCCTCTCCATGACAC | 靶点扩增 |
载体编号 Vector number | 基因 Gene | 靶点序列 Target sequence | 限制性内切酶 Restriction enzyme |
|---|---|---|---|
| GCR-237-1 | OsAGO2 | ACCAGCAGCGAGGAGGATCCAGG | BamH I |
| OsAGO3 | AACGGACCACGACGAACTCGAGG | Xho I | |
| OsAGO7 | TGCTTCCACATTGAGCCCCTCGG | Ban II | |
| GCR-237-2 | OsAGO2 | CTTATCTGCGAGACGCAGCTGGG | Pvu II |
| OsAGO3 | GATATCTGCAAGGAGCTCATCGG | Ban II | |
| OsAGO7 | TTGCCCCCAAAATTAAAGCTTGG | Hind III |
表 2 靶位点序列
Table 2 Sequence of target sites
载体编号 Vector number | 基因 Gene | 靶点序列 Target sequence | 限制性内切酶 Restriction enzyme |
|---|---|---|---|
| GCR-237-1 | OsAGO2 | ACCAGCAGCGAGGAGGATCCAGG | BamH I |
| OsAGO3 | AACGGACCACGACGAACTCGAGG | Xho I | |
| OsAGO7 | TGCTTCCACATTGAGCCCCTCGG | Ban II | |
| GCR-237-2 | OsAGO2 | CTTATCTGCGAGACGCAGCTGGG | Pvu II |
| OsAGO3 | GATATCTGCAAGGAGCTCATCGG | Ban II | |
| OsAGO7 | TTGCCCCCAAAATTAAAGCTTGG | Hind III |
图1 GCR 载体结构示意图Cas9(橙色盒子)、gRNA(白色盒子)和RUBY(红色盒子)由启动子OsUBQ10 P(蓝色盒子)驱动表达,Hsp T为终止子
Fig. 1 Structural diagram of GCR vectorCas9 (orange box), gRNA (white box), and RUBY (red box)are expressed by the promoter OsUBQ10 P (blue box), and Hsp T is terminator
图2 农杆菌介导的水稻遗传转化过程A:筛选阶段;B:分化阶段;C:生根阶段
Fig. 2 Agrobacterium-mediated genetic transformation of riceA: Screening stage. B: Differentiation stage. C: Rooting stage
图3 GCR-237-1和GCR-237-2基因编辑载体转化后得到红色植株A:野生型植株(ZH11,左)和GCR-237-1稳定转化后获得的编辑阳性株系A5 (右);B:野生型植株(ZH11,左)和GCR-237-2稳定转化后获得的编辑阳性株系B15(右)对比图;标尺3 cm
Fig. 3 Red-phenotype plants obtained after transformation with gene-editing vectors GCR-237-1 and GCR-237-2A: Comparative analysis of wild-type (ZH11, left) and GCR-237-1-transformed edited line A5 (right). B: Comparative analysis of wild-type (ZH11, left) and GCR-237-1-transformed edited line B15 (right). Bar=3 cm
图4 再生植株阳性鉴定M:DNA maker DL2000;WT:野生型阴性对照植株(单条带);1-11:阳性再生植株(双条带)
Fig. 4 Positive identification of regenerated plantsM: DNA maker DL2000. WT: Wild type negative control plant (single band). 1-11: Positive regenerated plants (double bands)
图5 Cas9 阳性植株和红色植株比例统计A:所有植株中Cas9表达盒的阳性率。GCR-237-1和GCR-237-2三批次的再生植株总数分别为(17、19、20)和(13、12、18);GCR-237-1和GCR-237-2三批次再生苗中转基因阳性植株数目分别为(17、18、18)和(13、12、14)。B:Cas9表达盒阳性植株中的红苗比例。GCR-237-1和GCR-237-2三批次阳性植株中的红苗数分别为(17、18、18)和(13、12、14)。柱状图的数值为平均值±标准误(n=3)
Fig. 5 Proportion statistics of Cas9 positive plants and red plantsA: The positive ratio of the Cas9 expression cassette in all plants. The total number of regenerated plants in the three batches of GCR-237-1 and GCR-237-2 are (17, 19 and 20) and (13, 12 and 18), respectively. The number of transgenic positive plants in the three batches of regenerated seedlings of GCR-237-1 and GCR-237-2 are (17, 18, and 18) and (13, 12, and 14), respectively. B: The proportion of red seedlings in Cas9 positive plants. The number of red seedlings among the positive plants in the three batches of GCR-237-1 and GCR-237-2 are (17, 18, and 18) and (13, 12, and 14), respectively. The values in the bar charts are of the mean ± standard error (n=3)
图6 部分阳性再生植株的酶切检测结果A:使用Xho I酶切PCR产物,鉴定GCR-237-1株系植株中OsAGO3的突变型;B:使用Hind III酶切PCR产物,鉴定GCR-237-2株系植株中OsAGO7的突变型; M:DNA maker DL2000; “+”表示经过酶切;本研究GCR-237-1株系植株靶向OsAGO2、OsAGO7和GCR-237-2株系植株靶向OsAGO2、OsAGO3直接送测序鉴定
Fig. 6 Identified results of some positive regenerated plants by enzyme digestionA: The mutant of OsAGO3 in GCR-237-1 was identified using Xho I enzyme digestion of PCR products. B: OsAGO7 mutant in GCR-237-2 strain was identified by PCR product digested by Hind III. M: DNA maker DL2000. + sign indicates that the enzyme is cut. In this study, GCR-237-1 strain plants targeted OsAGO2, OsAGO7, and GCR-237-2 strain plantstargeted OsAGO2 and OsAGO3 are directly sent to be sequenced
图7 再生植株A5和B15的测序结果红色植株A5(A)和B15(B)靶向OsAGO2、OsAGO3和OsAGO7的测序图谱
Fig. 7 Sequencing results of regenerated plants A5 and B15Sequencing results of OsAGO2, OsAGO3, and OsAGO7 in the red plants A5 (A)and B15 (B)
图 8 转化植株和红色植株编辑效率统计A:所有植株发生编辑植株比例。GCR-237-1和GCR-237-2三批次的再生植株总数分别为(17、19、20)和(13、12、18);GCR-237-1和GCR-237-2三批次再生苗中发生编辑的植株数目分别为(17、18、18)和(13、12、14)。B:红色植株中发生编辑的植株比例。GCR-237-1和GCR-237-2三批次的红苗数分别为(17、18、18)和(13、12、14),红色植株中发生编辑的植株数目分别为(17、18、18)和(13、12、14)。柱状图的数值为平均值±标准误(n=3)
Fig. 8 Editing efficiency statistics of transformed plants and red plantsA: The proportion of edited plants among all plants. The total number of regenerated plants in the three batches of GCR-237-1 and GCR-237-2 are (17, 19, and 20) and (13, 12, and 18), respectively. The number of edited plants in the three batches of regenerated seedlings of GCR-237-1 and GCR-237-2 are (17, 18, and 18) and (13, 12, and 14), respectively. B: The proportion of edited plants among red plants. The number of red seedlings in the three batches of GCR-237-1 and GCR-237-2 are (17, 18, and 18) and (13, 12, and 14), respectively. The number of edited plants among red plants are (17, 18, and 18) and (13, 12, and 14), respectively. The values in the bar charts are of the mean ± standard error (n=3)
| [1] | Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria [J]. Proc Natl Acad Sci USA, 2012, 109(39): E2579-E2586. |
| [2] | Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096): 816-821. |
| [3] | Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819-823. |
| [4] | Mali P, Yang LH, Esvelt KM, et al. RNA-guided human genome engineering via Cas9 [J]. Science, 2013, 339(6121): 823-826. |
| [5] | Chen JL, Li SY, He YB, et al. An update on precision genome editing by homology-directed repair in plants [J]. Plant Physiol, 2022, 188(4): 1780-1794. |
| [6] | Gallego-Bartolomé J, Gardiner J, Liu WL, et al. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain [J]. Proc Natl Acad Sci USA, 2018, 115(9): E2125-E2134. |
| [7] | Gong XY, Zhang T, Xing JL, et al. Positional effects on efficiency of CRISPR/Cas9-based transcriptional activation in rice plants [J]. aBIOTECH, 2019, 1(1): 1-5. |
| [8] | Li JY, Zhang C, He YB, et al. Plant base editing and prime editing: The current status and future perspectives [J]. J Integr Plant Biol, 2023, 65(2): 444-467. |
| [9] | Li ZX, Xiong XY, Li JF. The working dead: repurposing inactive CRISPR-associated nucleases as programmable transcriptional regulators in plants [J]. aBIOTECH, 2019, 1(1): 32-40. |
| [10] | Pan CT, Wu XC, Markel K, et al. CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants [J]. Nat Plants, 2021, 7(7): 942-953. |
| [11] | Mao YF, Zhang ZJ, Feng ZY, et al. Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis [J]. Plant Biotechnol J, 2016, 14(2): 519-532. |
| [12] | Wang ZP, Xing HL, Dong L, et al. Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation [J]. Genome Biol, 2015, 16(1): 144. |
| [13] | Yan LH, Wei SW, Wu YR, et al. High-efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system [J]. Mol Plant, 2015, 8(12): 1820-1823. |
| [14] | Chen LZ, Li W, Katin-Grazzini L, et al. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants [J]. Hortic Res, 2018, 5: 13. |
| [15] | Liang Z, Chen KL, Li TD, et al. Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes [J]. Nat Commun, 2017, 8: 14261. |
| [16] | Svitashev S, Schwartz C, Lenderts B, et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes [J]. Nat Commun, 2016, 7: 13274. |
| [17] | Woo JW, Kim J, Kwon SI, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins [J]. Nat Biotechnol, 2015, 33(11): 1162-1164. |
| [18] | Zhang Y, Liang Z, Zong Y, et al. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA [J]. Nat Commun, 2016, 7: 12617. |
| [19] | Feng ZY, Zhang BT, Ding WN, et al. Efficient genome editing in plants using a CRISPR/Cas system [J]. Cell Res, 2013, 23(10): 1229-1232. |
| [20] | Mao YF, Zhang H, Xu NF, et al. Application of the CRISPR-Cas system for efficient genome engineering in plants [J]. Mol Plant, 2013, 6(6): 2008-2011. |
| [21] | Miao J, Guo DS, Zhang JZ, et al. Targeted mutagenesis in rice using CRISPR-Cas system [J]. Cell Res, 2013, 23(10): 1233-1236. |
| [22] | Shan QW, Wang YP, Li J, et al. Targeted genome modification of crop plants using a CRISPR-Cas system [J]. Nat Biotechnol, 2013, 31(8): 686-688. |
| [23] | Breyer D, Kopertekh L, Reheul D. Alternatives to antibiotic resistance marker genes forIn VitroSelection of genetically modified plants-scientific developments, current use, operational access and biosafety considerations [J]. Crit Rev Plant Sci, 2014, 33(4): 286-330. |
| [24] | Minden V, Deloy A, Volkert AM, et al. Antibiotics impact plant traits, even at small concentrations [J]. AoB Plants, 2017, 9(2): plx010. |
| [25] | He YB, Zhu M, Wang LH, et al. Improvements of TKC technology accelerate isolation of transgene-free CRISPR/Cas9-edited rice plants [J]. Rice Sci, 2019, 26(2): 109-117. |
| [26] | Dong L, Li LN, Liu CL, et al. Genome editing and double-fluorescence proteins enable robust maternal haploid induction and identification in maize [J]. Mol Plant, 2018, 11(9): 1214-1217. |
| [27] | Gao XH, Chen JL, Dai XH, et al. An effective strategy for reliably isolating heritable and Cas9-free Arabidopsis mutants generated by CRISPR/Cas9-mediated genome editing [J]. Plant Physiol, 2016, 171(3): 1794-1800. |
| [28] | He Y, Zhang T, Sun H, et al. A reporter for noninvasively monitoring gene expression and plant transformation [J]. Hortic Res, 2020, 7(1): 152. |
| [29] | Xu JT, Yin YJ, Jian LM, et al. Seeing is believing: a visualization toolbox to enhance selection efficiency in maize genome editing [J]. Plant Biotechnol J, 2021, 19(5): 872-874. |
| [30] | Yan YY, Zhu JJ, Qi XT, et al. Establishment of an efficient seed fluorescence reporter-assisted CRISPR/Cas9 gene editing in maize [J]. J Integr Plant Biol, 2021, 63(9): 1671-1680. |
| [31] | Yu H, Zhao Y. Fluorescence marker-assisted isolation of Cas9-free and CRISPR-edited Arabidopsis plants [J]. Methods Mol Biol, 2019, 1917: 147-154. |
| [32] | Donaldson L. Autofluorescence in plants [J]. Molecules, 2020, 25(10): E2393. |
| [33] | Contag CH, Bachmann MH. Advances in in vivo bioluminescence imaging of gene expression [J]. Annu Rev Biomed Eng, 2002, 4: 235-260. |
| [34] | Jefferson RA. The GUS reporter gene system [J]. Nature, 1989, 342(6251): 837-838. |
| [35] | Millar AJ, Short SR, Chua NH, et al. A novel circadian phenotype based on firefly luciferase expression in transgenic plants [J]. Plant Cell, 1992, 4(9): 1075-1087. |
| [36] | He YB, Zhu M, Wu JH, et al. Repurposing of anthocyanin biosynthesis for plant transformation and genome editing [J]. Front Genome Ed, 2020, 2: 607982. |
| [37] | Liu Y, Zeng JM, Yuan C, et al. Cas9-PF, an early flowering and visual selection marker system, enhances the frequency of editing event occurrence and expedites the isolation of genome-edited and transgene-free plants [J]. Plant Biotechnol J, 2019, 17(7): 1191-1193. |
| [38] | Zheng J, Wu H, Zhu HB, et al. Determining factors, regulation system, and domestication of anthocyanin biosynthesis in rice leaves [J]. New Phytol, 2019, 223(2): 705-721. |
| [39] | Ge XY, Wang P, Wang Y, et al. Development of an eco-friendly pink cotton germplasm by engineering betalain biosynthesis pathway [J]. Plant Biotechnol J, 2023, 21(4): 674-676. |
| [40] | Wang D, Zhong Y, Feng B, et al. The RUBY reporter enables efficient haploid identification in maize and tomato [J]. Plant Biotechnol J, 2023, 21(8): 1707-1715. |
| [41] | Halpin C, Cooke SE, Barakate A, et al. Self-processing 2A-polyproteins—a system for co-ordinate expression of multiple proteins in transgenic plants [J]. Plant J, 1999, 17(4): 453-459. |
| [42] | Sharma P, Yan F, Doronina VA, et al. 2A peptides provide distinct solutions to driving stop-carry on translational recoding [J]. Nucleic Acids Res, 2012, 40(7): 3143-3151. |
| [43] | Xie KB, Minkenberg B, Yang YN. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system [J]. Proc Natl Acad Sci USA, 2015, 112(11): 3570-3575. |
| [44] | Wang JJ, Chen HD. A novel CRISPR/Cas9 system for efficiently generating Cas9-free multiplex mutants in Arabidopsis [J]. aBIOTECH, 2019, 1(1): 6-14. |
| [45] | de Oliveira MVV, Jin X, Chen X, et al. Imbalance of tyrosine by modulating TyrA arogenate dehydrogenases impacts growth and development of Arabidopsis thaliana [J]. Plant J, 2019, 97(5): 901-922. |
| [1] | 刁辰洋, 崔有志, 李炳志. 靶向诱变介导的微生物进化技术研究进展[J]. 生物技术通报, 2025, 41(8): 11-21. |
| [2] | 余永霞, 杜再慧, 朱龙佼, 许文涛. 基因编辑技术在牛种中的应用及研究进展[J]. 生物技术通报, 2025, 41(8): 34-41. |
| [3] | 侯鹰翔, 费思恬, 黎妮, 李兰, 宋松泉, 王伟平, 张超. 水稻miRNAs响应生物胁迫研究进展[J]. 生物技术通报, 2025, 41(7): 69-80. |
| [4] | 程慧娟, 王昕, 石小涛, 马东旭, 龚大春, 胡骏鹏, 谢智文. 转录因子CREA敲除对黑曲霉形态和分泌β-葡萄糖苷酶的影响[J]. 生物技术通报, 2025, 41(6): 344-354. |
| [5] | 吴浩, 董伟峰, 贺子天, 李艳肖, 谢辉, 孙明哲, 沈阳, 孙晓丽. 水稻BXL基因家族的全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(6): 87-98. |
| [6] | 霍贯中, 张欣濡, 田士军, 李君. CRISPR/Cas12a基因编辑技术在植物中的研究进展[J]. 生物技术通报, 2025, 41(6): 1-11. |
| [7] | 裴景琪, 赵梦然, 黄晨阳, 邬向丽. 一个影响糙皮侧耳生长发育的功能基因的发现与验证[J]. 生物技术通报, 2025, 41(6): 327-334. |
| [8] | 刘华, 宋洁, 曾海娟, 王金斌, 钱韻芳. 单碱基突变检测方法及应用的研究进展[J]. 生物技术通报, 2025, 41(6): 61-70. |
| [9] | 刘园园, 陈析丰, 钱前, 高振宇. 水稻穗发育调控的分子机制研究进展[J]. 生物技术通报, 2025, 41(5): 1-13. |
| [10] | 周倩, 唐梦君, 张小燕, 陆俊贤, 唐修君, 杨星星, 高玉时. 基于CRISPR-Cas系统的多重耐药菌防治技术研究进展[J]. 生物技术通报, 2025, 41(5): 42-51. |
| [11] | 高畅, 庄添驰, 李宁, 刘云, 顾鹏飞, 赵昕怡, 季明辉. RPA-CRISPR/Cas12a结合重力驱动微流控芯片的MTB快检方法的建立[J]. 生物技术通报, 2025, 41(5): 62-69. |
| [12] | 杜量衡, 唐黄磊, 张治国. 控制水稻光响应基因ELM1的图位克隆[J]. 生物技术通报, 2025, 41(5): 82-89. |
| [13] | 任柱平, 杨泰然, 雷元三, 金留飞, 崔古贞, 田益明, 陈峥宏. 具备高效CRISPR协同激活活性的HIEC6-dCas9-SAM稳转细胞株构建[J]. 生物技术通报, 2025, 41(5): 52-61. |
| [14] | 文博霖, 万敏, 胡建军, 王克秀, 景晟林, 王心悦, 朱博, 唐铭霞, 李兵, 何卫, 曾子贤. 马铃薯川芋50遗传转化及基因编辑体系的建立[J]. 生物技术通报, 2025, 41(4): 88-97. |
| [15] | 陈晓军, 惠建, 马洪文, 白海波, 钟楠, 李稼润, 樊云芳. 利用单碱基基因编辑技术创制OsALS抗除草剂水稻种质资源[J]. 生物技术通报, 2025, 41(4): 106-114. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||