生物技术通报 ›› 2025, Vol. 41 ›› Issue (8): 11-21.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0191

• 综述与专论 •    下一篇

靶向诱变介导的微生物进化技术研究进展

刁辰洋(), 崔有志, 李炳志()   

  1. 1.天津大学化工学院 教育部合成生物学前沿科学中心,天津 300350
    2.天津大学合成生物技术全国重点实验室,天津 300350
  • 收稿日期:2025-02-23 出版日期:2025-08-26 发布日期:2025-08-14
  • 通讯作者: 李炳志,男,博士,教授,研究方向 :合成生物学;E-mail: bzli@tju.edu.cn
  • 作者简介:刁辰洋,男,硕士研究生,研究方向 :合成生物学;E-mail: diaochenyang@tju.edu.cn
  • 基金资助:
    国家重点研发计划(2024YFA0916500)

Research Advances in Targeted Mutagenesis-mediated Microbial Evolutionary Engineering

DIAO Chen-yang(), CUI You-zhi, LI Bing-zhi()   

  1. 1.School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350
    2.State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300350
  • Received:2025-02-23 Published:2025-08-26 Online:2025-08-14

摘要:

生物基因组自然突变赋予其不同性状,驱动生物进化适应生存环境。然而,生物自然条件下进化速度缓慢。通过在特定DNA序列引入碱基突变的策略可实现生物实验室内的快速进化,广泛应用于蛋白功能非理性改造和代谢路径优化。然而,传统的诱变进化方法存在着实验工作量大、突变效率低,突变窗口不精确等缺点,而靶向突变技术通过精确定位特定DNA范围引入突变,不仅能有效提高突变效率,还能显著缩短实验室进化周期。近年来,在目标序列靶向引入突变已成为微生物进化技术重要研究方向。靶向突变技术能够优化特定微生物的代谢途径、提升底盘耐受性,广泛应用于生物催化、环境保护、工业发酵等领域。本文总结了在主要模式微生物底盘中开发的靶向突变进化技术,重点介绍了基于复制易错系统、CRISPR-Cas系统和MutaT7系统的靶向突变系统的设计原理与应用,同时分析了现有实验室进化系统的优缺点,并讨论了未来靶向诱变技术发展方向。

关键词: 定向进化, 靶向突变, 基因编辑, RNA聚合酶, CRISPR-Cas

Abstract:

Natural mutations in organism's genomes confer diverse traits that facilitate evolutionary adaptation to environmental challenges. However, the slow evolutionary rates inherent to natural settings limit their practical utility. Strategies involving targeted base modifications at specific DNA sequences enable accelerated laboratory evolution, which has been widely applied in non-rational protein engineering and metabolic pathway optimization. Nevertheless, conventional mutagenesis methods remain labor-intensive, suffer from low efficiency, and lack targeting precision. In contrast, targeted mutagenesis technologies introduce mutations at precisely defined genomic loci, significantly improving efficiency and shortening evolution cycles. In recent years, targeted mutagenesis has emerged as a key area of research in microbial evolutionary engineering. These technologies enhance the optimization of microbial metabolic pathways, improve stress tolerance in chassis strains, and have found widespread applications in biocatalysis, environmental remediation,and industrial fermentation. This review summarizes recent advances in targeted mutagenesis systems developed for key microbial chassis organisms, focusing on the design principles and applications of error-prone replication systems, CRISPR-Cas-mediated mutagenesis systems, and the MutaT7 mutagenesis system. Additionally, it analyzes the strengths and limitations of current laboratory evolution systems and discusses future prospects for precision-targeted mutagenesis technologies.

Key words: directed evolution, targeted mutagenesis, gene editing, RNA polymerase, CRISPR-Cas