生物技术通报 ›› 2025, Vol. 41 ›› Issue (12): 50-65.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0627

• 综述与专论 • 上一篇    下一篇

人工智能驱动的酶改造与设计研究进展

郭发旭1,2(), 冯全1(), 张建华2,3(), 周焕斌2,4(), 杨森1, 王健2,3, 周国民5,6,7   

  1. 1.甘肃农业大学机电工程学院,兰州 730070
    2.三亚中国农业科学院国家南繁研究院,三亚 572024
    3.中国农业科学院农业信息研究所,北京 100081
    4.中国农业科学院植物保护研究所,北京 100193
    5.农业农村部南京农业机械化研究所,南京 210014
    6.国家农业科学数据 中心,北京 100081
    7.中国农业科学院西部农业研究中心,昌吉 831100
  • 收稿日期:2025-06-16 出版日期:2025-12-26 发布日期:2026-01-06
  • 通讯作者: 冯全,男,博士,教授,研究方向 :计算机视觉;E-mail: fquan@gsau.edu.cn
    张建华,男,博士,研究员,研究方向 :计算机视觉;E-mail: zhangjianhua@caas.cn
    周焕斌,男,博士,研究员,研究方向 :水稻与白叶枯病原菌的分子互作、基因组编辑技术开发与应用;E-mail: zhouhuanbin@cass.cn
  • 作者简介:郭发旭,男,博士研究生,研究方向 :生物信息学;E-mail: guofax@gsau.edu.cn
  • 基金资助:
    国家重点研发计划(2022YFF0711800);海南省自然科学基金(325MS155);三亚崖州湾科技城科技专项资助(SCKJ-JYRC-2023-45);三亚中国农业科学院国家南繁研究院南繁专项(YBXM2409);三亚中国农业科学院国家南繁研究院南繁专项(YBXM2410);三亚中国农业科学院国家南繁研究院南繁专项(YBXM2430);三亚中国农业科学院国家南繁研究院南繁专项(YBXM2508);三亚中国农业科学院国家南繁研究院南繁专项(YBXM2509);中央级公益性科研院所基本科研业务费专项(JBYW-AII-2024-05);中央级公益性科研院所基本科研业务费专项(JBYW-AII-2025-05);中央级公益性科研院所基本科研业务费专项(Y2025YC90)

Research Advances in AI-driven Enzyme Modifying and Design

GUO Fa-xu1,2(), FENG Quan1(), ZHANG Jian-hua2,3(), ZHOU Huan-bin2,4(), YANG Sen1, WANG Jian2,3, ZHOU Guo-min5,6,7   

  1. 1.College of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou 730070
    2.National Nanfan Research Institute, Chinese Academy of Agriculture Science, Sanya 572024
    3.Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081
    4.Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193
    5.Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014
    6.National Agricultural Science Data Center, Beijing 100081
    7.Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji 831100
  • Received:2025-06-16 Published:2025-12-26 Online:2026-01-06

摘要:

酶在生物体内以及工业应用里有着极其关键的作用,凭借其独特的催化性能,成为催化剂的关键选择之一。然而传统的酶改造与设计方法面临不少挑战,如序列空间庞大以及多目标优化存在困难等情况。近年来,人工智能(artificial intelligence, AI)技术中的深度学习和生成式人工智能方法,为酶改造与设计提供了新思路和解决方案,可在大规模数据的支撑下突破这些限制。AI驱动的策略实现了高效的序列空间探索和精准的结构-功能关系预测,并借助强化学习框架协调多目标优化。这些方法不仅显著加速了酶的工程化进程,更在提升催化效率、增强热稳定性、改善底物选择性等方面取得了突破性成果。本文系统综述了人工智能驱动酶改造与设计的最新研究进展,从基础数据库构建、智能改造策略、智能设计方法等方面进行了深入分析,同时探讨了当前面临的数据、模型及工程化挑战与未来发展方向。这些创新为设计高性能、多功能的酶开辟了广阔道路,并将推动生物制造、环境修复和生物育种等领域向更高效、智能和可持续的方向发展。

关键词: 人工智能, 酶, 从头设计, 数据驱动, 生成式AI

Abstract:

Enzymes play a crucial role in both biological systems and industrial applications. Due to their unique catalytic properties, they are among the key choices for catalytic processes. However, traditional enzyme engineering and design approaches face significant challenges, such as the vastness of sequence space and the complexities associated with multi-objective optimization. In recent years, artificial intelligence (AI) technologies, particularly deep learning and generative AI methods, have provided novel perspectives and solutions for enzyme modification and design, enabling breakthroughs in overcoming these limitations with large-scale data support. AI-driven strategies have facilitated efficient exploration of sequence space, accurate prediction of structure-function relationships, and the coordinated multi-objective optimization using reinforcement learning frameworks. These methods have not only significantly accelerated the enzyme engineering process but also led to groundbreaking advancements in the enhancement of catalytic efficiency, thermal stability, and substrate specificity. This review systematically summarizes the latest research on AI-driven enzyme modification and design, providing an in-depth analysis of foundational database construction, intelligent modification strategies, and design methodologies. Furthermore, it discusses current challenges related to data, models, and engineering applications, as well as future directions. These innovations open up vast possibilities for the design of high-performance, multifunctional enzymes and are poised to propel fields such as biomanufacturing, environmental remediation, and agricultural biotechnology toward more efficient, intelligent, and sustainable development.

Key words: artificial intelligence, enzymes, de novo design, data-driven, generative AI