生物技术通报 ›› 2014, Vol. 0 ›› Issue (10): 33-42.
张龙辉, 王国栋
收稿日期:
2014-02-03
出版日期:
2014-10-20
发布日期:
2014-10-17
作者简介:
张龙辉,女,硕士研究生,研究方向:水生生物的遗传与育种
基金资助:
Zhang Longhui, Wang Guodong
Received:
2014-02-03
Published:
2014-10-20
Online:
2014-10-17
摘要: 胰岛素样蛋白(Insulin-like/related peptides,ILPs)是无脊椎动物中胰岛素的同源基因。以昆虫为例,概述了ILPs的结构、表达以及相关通路特别是胰岛素信号通路(Insulin signaling pathway),并总结了其在调控机体生长、发育、新陈代谢、繁殖和免疫等生命过程中的作用。
张龙辉, 王国栋. 无脊椎动物胰岛素样蛋白(Insulin-like/related peptides)研究进展——以昆虫为例[J]. 生物技术通报, 2014, 0(10): 33-42.
Zhang Longhui, Wang Guodong. Insulin-like Peptides in Invertebrates and Their Signaling Pathways—Take Insects,for Example[J]. Biotechnology Bulletin, 2014, 0(10): 33-42.
[1] Nagasawa H, Kataoka H, Isogai A, et al. Amino-terminal amino acid sequence of the silkworm prothoracicotropic hormone:homology with insulin[J]. Science, 1984, 226(4680):1344-1345. [2] Antonova Y, Arik AJ, Moore W, et al. Insulin-like peptides:structure, signaling, and function[OL]//Gibert LI. Insect Endocrinology. Elsevier Academic Press, 2012:63-92. [3] Garelli A, Gontijo AM, Miguela V, et al. Imaginal discs secrete insulin-like peptide 8 to mediate plasticity of growth and maturation[J]. Science, 2012, 336(6081):579-582. [4] Colombani J, Andersen DS, Léopold P. Secreted peptide Dilp8 coordinates Drosophila tissue growth with developmental timing[J]. Science, 2012, 336(6081):582-585. [5] York PS, Cummins SF, Lucas T, et al. Differential expression of neuropeptides correlates with growth rate in cultivated Haliotis asinina(Vetigastropoda:Mollusca)[J]. Aquaculture, 2012, 334:159-168. [6] Miller CM, Newmark PA. An insulin-like peptide regulates size and adult stem cells in planarians[J]. International Journal of Developmental Biology, 2012, 56(1):75-82. [7] Claeys I, Simonet G, Poels J, et al. Insulin-related peptides and their conserved signal transduction pathway[J]. Peptides, 2002, 23(4):807-816. [8] Brogiolo W, Stocker H, Ikeya T, et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control[J]. Current Biology, 2001, 11(4):213-221. [9] Smit A, Vreugdenhil E, Ebberink R, et al. Growth-controlling molluscan neurons produce the precursor of an insulin-related peptide[J]. Nature, 1988, 331:535-538. [10] Veenstra JA, Sellami A. Regulatory peptides in fruit fly midgut[J]. Cell and Tissue Research, 2008, 334(3):499-516. [11] Veenstra JA. Peptidergic paracrine and endocrine cells in the midgut of the fruit fly maggot[J]. Cell and Tissue Research, 2009, 336(2):309-323. [12] Antonova-Koch Y, Riehle M A, Arik AJ, et al. Insulin-like peptides[OL]//Abba JK. Handbook of Biologically Active Peptides. Else-vier Academic Press, 2013:267-275. [13] Géminard C, Rulifson EJ, Léopold P. Remote control of insulin secretion by fat cells in Drosophila[J]. Cell Metabolism, 2009, 10(3):199-207. [14] Wang S, Tulina N, Carlin DL, et al. The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis[J]. Proceedings of the National Academy of Sciences, 2007, 104(50):19873-19878. [15] Callander G, Bathgate R. Relaxin family peptide systems and the central nervous system[J]. Cellular and Molecular Life Sciences, 2010, 67(14):2327-2341. [16] Clements J, Hens K, Francis C, et al. Conserved role for the Drosophila Pax6 homolog eyeless in differentiation and function of insulin-producing neurons[J]. Proceedings of the National Academy of Sciences, 2008, 105(42):16183-16188. [17] Grönke S, Clarke DF, Broughton S, et al. Molecular evolution and functional characterization of Drosophila insulin-like peptides[J]. PLoS Genetics, 2010, 6(2):e1000857. [18] Yang Ch, Belawat P, Hafen E, et al. Drosophila egg-laying site selection as a system to study simple decision-making processes[J]. Science, 2008, 319(5870):1679-1683. [19] Badisco L, Claeys I, Van Hiel M, et al. Purification and characterization of an insulin-related peptide in the desert locust, Schistocerca gregaria:immunolocalization, cDNA cloning, transcript profiling and interaction with neuroparsin[J]. Journal of Molecular Endocrinology, 2008, 40(3):137-150. [20] Ament SA, Corona M, Pollock HS, et al. Insulin signaling is involved in the regulation of worker division of labor in honey bee colonies[J]. Proceedings of the National Academy of Sciences, 2008, 105(11):4226-4231. [21] Okamoto N, Yamanaka N, Satake H, et al. An ecdysteroid-inducible insulin-like growth factor-like peptide regulates adult development of the silkmoth Bombyx mori[J]. FEBS Journal, 2009, 276(5):1221-1232. [22] Hernández-Sánchez C, Mansilla A, De La Rosa E, et al. Proinsulin in development:new roles for an ancient prohormone[J]. Diabetologia, 2006, 49(6):1142-1150. [23] Steiner D, Park SY, Støy J, et al. A brief perspective on insulin production[J]. Diabetes, Obesity and Metabolism, 2009, 11(s4):189-196. [24] Rayburn LY, Rhea J, Jocoy SR, et al. The proprotein convertase amontillado(amon)is required during Drosophilam pupal deve-lopment[J]. Developmental Biology, 2009, 333(1):48-56. [25] Rhea JM, Wegener C, Bender M. The proprotein convertase encoded by amontillado(amon)is required in Drosophila corpora cardiaca endocrine cells producing the glucose regulatory hormone AKH[J]. PLoS Genetics, 2010, 6(5):e1000967. [26] Sajid W, Kulahin N, Schluckebier G, et al. Structural and biological properties of the Drosophila insulin-like peptide 5 show evolutionary conservation[J]. Journal of Biological Chemistry, 2011, 286(1):661-673. [27] Wen Z, Gulia M, Clark KD, et al. Two insulin-like peptide family members from the mosquito Aedes aegypti exhibit differential biological and receptor binding activities[J]. Molecular and Cellular Endocrinology, 2010, 328(1):47-55. [28] Kaletsky R, Murphy CT. The role of insulin/IGF-like signaling in C. elegans longevity and aging[J]. Disease Models & Mechanisms, 2010, 3(7-8):415-419. [29] Smit A, Spijker S, Van Minnen J, et al. Expression and characterization of molluscan insulin-related peptide VII from the mollusc Lymnaea stagnalis[J]. Neuroscience, 1996, 70(2):589-596. [30] Shakhmantsir I, Massad NL, Kennell JA. Regulation of cuticle pigmentation in Drosophila by the nutrient sensing insulin and TOR signaling pathways[J]. Developmental Dynamics, 2013, 243(3):393-401. [31] Nakahara Y, Matsumoto H, Kanamori Y, et al. Insulin signaling is involved in hematopoietic regulation in an insect hematopoietic organ[J]. Journal of Insect Physiology, 2006, 52(1):105-111. [32] Nijhout HF, Grunert LW. Bombyxin is a growth factor for wing imaginal disks in Lepidoptera[J]. Proceedings of the National Academy of Sciences, 2002, 99(24):15446-15450. [33] Rewitz KF, Yamanaka N, Gilbert LI, et al. The insect neuropeptide PTTH activates receptor tyrosine kinase torso to initiate metamorp-hosis[J]. Science, 2009, 326(5958):1403-1405. [34] Gu SH, Lin JL, Lin PL, et al. Insulin stimulates ecdysteroidogenesis by prothoracic glands in the silkworm, Bombyx mori[J]. Insect Biochemistry and Molecular Biology, 2009, 39(3):171-179. [35] Nagata K, Maruyama K, Kojima K, et al. Prothoracicotropic activity of SBRPs, the insulin-like peptides of the saturniid silkworm Samia cynthia ricini[J]. Biochemical and Biophysical Research Communications, 1999, 266(2):575-578. [36] Satake SI, Masumura M, Ishizaki H, et al. Bombyxin, an insulin-related peptide of insects, reduces the major storage carbohydrates in the silkworm Bombyx mori[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology, 1997, 118(2):349-357. [37] Belgacem YH, Martin JR. Hmgcr in the corpus allatum controls sexual dimorphism of locomotor activity and body size via the insulin pathway in Drosophila[J]. PLoS One, 2007, 2(1):e187. [38] Raikhel A. Vitellogenesis of disease vectors, from physiology to genes[OL]//Biology of Disease Vectors. Elsevier Academic Press, 2005:329-346. [39] Tufail M, Takeda M. Molecular characteristics of insect vitellogen-ins[J]. Journal of Insect Physiology, 2008, 54(12):1447-1458. [40] Rees DA, Giles P, Lewis MD, et al. Adenosine regulates thrombomo-dulin and endothelial protein C receptor expression in folliculoste-llate cells of the pituitary gland[J]. Purinergic Signalling, 2010, 6(1):19-29. [41] Hatle JD, Juliano SA, Borst DW. Hemolymph ecdysteroids do not affect vitellogenesis in the lubber grasshopper[J]. Archives of Insect Biochemistry and Physiology, 2003, 52(1):45-57. [42] Richard DS, Rybczynski R, Wilson TG, et al. Insulin signaling is necessary for vitellogenesis in Drosophila melanogaster independent of the roles of juvenile hormone and ecdysteroids:female sterility of the chico insulin signaling mutation is autonomous to the ovary[J]. Journal of Insect Physiology, 2005, 51(4):455-464. [43] Wigby S, Slack C, Grönke S, et al. Insulin signalling regulates remating in female Drosophila[J]. Proceedings of the Royal Society B:Biological Sciences, 2011, 278(1704):424-431. [44] Gutiérrez A, Nieto J, Pozo F, et al. Effect of insulin/IGF-I like peptides on glucose metabolism in the white shrimp Penaeus vannamei[J]. General and Comparative Endocrinology, 2007, 153(1):170-175. [45] Green DA, Extavour CG. Insulin signalling underlies both plasticity and divergence of a reproductive trait in Drosophila[J]. Proceedings of the Royal Society B:Biological Sciences, 2014, 281(1779):20132673. [46] Gancz D, Gilboa L. Insulin and target of rapamycin signaling orchestrate the development of ovarian niche-stem cell units in Drosophila[J]. Development, 2013, 140(20):4145-4154. [47] Gäde G. Regulation of intermediary metabolism and water balance of insects by neuropeptides[J]. Annual Reviews in Entomology, 2004, 49(1):93-113. [48] Satake SI, Nagata K, Kataoka H, et al. Bombyxin secretion in the adult silkmoth Bombyx mori:sex-specificity and its correlation with metabolism[J]. Journal of Insect Physiology, 1999, 45(10):939-945. [49] Stoppelli MP, Garcia JV, Decker SJ, et al. Developmental regulation of an insulin-degrading enzyme from Drosophila melanogaster[J]. Proceedings of the National Academy of Sciences, 1988, 85(10):3469-3473. [50] Garcia JV, Fenton BW, Rosner MR. Isolation and characterization of an insulin-degrading enzyme from Drosophila melanogaster[J]. Biochemistry, 1988, 27(12):4237-4244. [51] Galagovsky D, Katz MJ, Acevedo JM, et al. The Drosophila insulin degrading enzyme restricts growth by modulating the PI3K pathway in a cell autonomous manner[J]. Molecular Biology of the Cell, 2014, 25(6):916-924. [52] Liu Y, Zhou S, Ma L, et al. Transcriptional regulation of the insulin signaling pathway genes by starvation and 20-hydroxyecdysone in the Bombyx fat body[J]. Journal of Insect Physiology, 2010, 56(10):1436-1444. [53] Okamoto N, Yamanaka N, Yagi Y, et al. A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila[J]. Developmental Cell, 2009, 17(6):885-891. [54] Sim C, Denlinger DL. Insulin signaling and the regulation of insect diapause[J]. Frontiers in Physiology, 2013, 4:189. [55] Bokovec AB, Gelman DB. Insect neurochemistry and neurophysio-logy[OL]//Wang ZS, Zheng WH, Guo F.Effect of Bombyx 4K-PTTH and bovine insulin on testis development of indian silkworm, Philosamia cynthia ricini. US:Humana Press, 1986:335-338. [56] Arpagaus M. Vertebrate insulin induces diapause termination in Pieris brassicae pupae[J]. Roux's Archives of Developmental Biology, 1987, 196(8):527-530. [57] Williams KD, Sokolowski MB. Evolution:how fruit flies adapt to seasonal stresses[J]. Current Biology, 2009, 19(2):R63-R64. [58] Wu Q, Zhang Y, Xu J, et al. Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37):13289-13294. [59] Corl AB, Rodan AR, Heberlein U. Insulin signaling in the nervous system regulates ethanol intoxication in Drosophila melanogaster[J]. Nature Neuroscience, 2004, 8(1):18-19. [60] Shakhmantsir I, Massad NL, Kennell JA. Regulation of cuticle pigmentation in drosophila by the nutrient sensing insulin and TOR signaling pathways[J]. Developmental Dynamics, 2014, 243(3):393-401. [61] Dionne MS, Pham LN, Shirasu-Hiza M, et al. Akt and foxo dysregu-lation contribute to infection-induced wasting in Drosophila[J]. Current Biology, 2006, 16(20):1977-1985. [62] Libert S, Chao Y, Zwiener J, et al. Realized immune response is enhanced in long-lived puc and chico mutants but is unaffected by dietary restriction[J]. Molecular Immunology, 2008, 45(3):810-817. [63] Becker T, Loch G, Beyer M, et al. FOXO-dependent regulation of innate immune homeostasis[J]. Nature, 2010, 463(7279):369-373. [64] Diangelo JR, Bland ML, Bambina S, et al. The immune response attenuates growth and nutrient storage in Drosophila by reducing insulin signaling[J]. Proceedings of the National Academy of Sciences, 2009, 106(49):20853-20858. [65] Loch G, Jentgens E, Bülow M, et al. Metabolism and innate immunity:FOXO regulation of antimicrobial peptides in Drosophila[J]. Innate Immunity :Resistance and Disease-Romoting Principks, 2013, 4:103-111. [66] Corby-Harris V, Drexler A, de Jong LW, et al. Activation of Akt signaling reduces the prevalence and intensity of malaria parasite infection and lifespan in Anopheles stephensi mosquitoes[J]. PLoS Pathogens, 2010, 6(7):e1001003. [67] Slack C, Werz C, Wieser D, et al. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk[J]. PLoS Genetics, 2010, 6(3):e1000881. [68] Hwangbo DS, Gersham B, Tu MP, et al. Drosophila dFOXO controls lifespan and regulates insulin signalling in brain and fat body[J]. Nature, 2004, 429(6991):562-566. [69] Tatar M, Post S, Yu K. Nutrient control of Drosophila longevity[J]. Trends in Endocrinology & Metabolism, 2014:S1043-2760(14)00042. |
[1] | 王争艳, 胡海生, 雍晗紫, 鲁玉杰. 共生菌与昆虫的营养互作[J]. 生物技术通报, 2022, 38(7): 99-108. |
[2] | 朴君, 张璐婕, 朴敬爱, 周益军, 李硕. 利用小RNA深度测序技术检测灰飞虱病毒种类[J]. 生物技术通报, 2022, 38(2): 281-288. |
[3] | 胡紫媛, 夏嫱. 昆虫肠道菌群组学研究及功能和应用进展[J]. 生物技术通报, 2021, 37(1): 102-112. |
[4] | 徐雪亮, 王奋山, 刘子荣, 范琳娟, 季香云, 蒋杰贤, 姚英娟. RNA干扰技术在昆虫学领域研究进展[J]. 生物技术通报, 2021, 37(1): 255-261. |
[5] | 段入心, 孟雷, 王宁新. 昆虫共生菌介导的抗药性研究进展[J]. 生物技术通报, 2019, 35(9): 29-30. |
[6] | 王端, 姚香梅, 叶健. 根际微生物-植物-病毒-介体昆虫多元互作研究进展[J]. 生物技术通报, 2018, 34(2): 54-65. |
[7] | 关桂静, 赵恒燕, 王洪苏, 刘金香. 病毒-植物互作对介体昆虫生物学特性的影响[J]. 生物技术通报, 2017, 33(4): 44-50. |
[8] | 万婧, 相兴伟, 江玲丽, 周向阳. 杆状病毒-昆虫细胞表达系统在复合体重组表达应用中的研究进展[J]. 生物技术通报, 2014, 0(2): 7-14. |
[9] | 李振轮, 李鑫强, 杨水英. 土壤因子对绿僵菌生命活动的影响研究进展[J]. 生物技术通报, 2014, 0(2): 41-46. |
[10] | 王会冬, 龚亮, 胡美英, 洪鹏. 系统RNA干扰及在昆虫中的应用[J]. 生物技术通报, 2012, 0(12): 19-24. |
[11] | 张玥;苏明波;周宇波;. 组蛋白去乙酰化酶6(HDAC6)抑制剂分子水平高通量筛选模型的建立[J]. , 2012, 0(08): 181-188. |
[12] | 刘拂晓;柳增善;王志亮;. 杆状病毒表达系统——有效的VLP构建工具[J]. , 2012, 0(06): 25-31. |
[13] | 武强;吕志创;万方浩;李照会;. 三种提取苹果绵蚜基因组DNA方法的比较[J]. , 2012, 0(01): 70-73. |
[14] | 赵淑玲;梁昌镛;李敏;王海花;张高瞻;. 美洲棉铃虫细胞中dsRNA介导的egfp基因沉默分析[J]. , 2011, 0(11): 130-133. |
[15] | 曾利平;闫尧;徐旭士;. 棉铃虫核型多角体病毒Ha105的序列分析及敲除和回复菌株的构建[J]. , 2011, 0(07): 134-138. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||