[1] DJ, Campbell RG, Gulden RH, et al. Cycling of extracellular DNA in the soil environment[J]. Soil Biology and Biochemistry, 2007, 39:2977-2991. [2] G, Ascher J, Borgogni F, et al. Extracellular DNA in soil and sediment:fate and ecological relevance[J]. Biology and Fertility of Soils, 2009, 45:219-235. [3] E. Diverse plant and animal genetic records from Holocene and Pleistocene sediments[J]. Science, 2003, 300:791-795. [4] A, Sayler GS, Barkay T. The extraction and purification of microbial DNA from sediments[J]. Journal of Microbiological Methods, 1987, 7:57-66. [5] MR, August PR, Bettermann AD, et al. Cloning the soil meta-genome:a strategy for accessing the genetic and functional diversity of uncultured microorganisms[J]. Applied and Environmental Microbiology, 2000, 66:2541-2547. [6] J. Metagenomics:application of genomics to uncultured microorganisms[J]. Microbiology and Molecular Biology Reviews, 2004, 68:669. [7] K, Bird KL, Rasmussen M, et al. Meta-barcoding of "dirt" DNA from soil reflects vertebrate biodiversity[J]. Molecular Ecology, 2012, 21:1966-1979. [8] R, de Danieli S, Miquel C, et al. Tracking earthworm communities form soil DNA[J]. Molecular Ecology, 2012, 21:2017-2030. [9] J, Rondon MR, Brady SF, et al. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products[J]. Chemistry and Biology, 1988, 5:245-249. [10] P, Tyson GW. Microbiology:Metagenomics[J]. Nature, 2008, 455(7212):481-483. [11] National Academics. The new science of metagenomics:revealing the secrets of our microbial planet[M]. Washington DC:National Academics Press, 2007:1-170. [12] 魏军, 赵志军. 下一代测序技术在分子诊断中的应用[J]. 分子诊断与治疗杂志, 2013, 5(3):145-151. [13] Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules[J]. Science, 323:133-138. [14] 周与华, 李擎天, 郭晓奎. 运用454焦磷酸测序技术对病原菌16S-rDNA的分析[J]. 检测医学, 2011, 26(6):364-367. [15] DA, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing[J]. Nature, 2008, 452(7189):872-876. [16] D, Arctander P, Minelli A, et al. DNA points the way ahead in taxonomy-in assessing new approaches, it's time for DNA's unique contribution to take a central role[J]. Nature, 2002, 418:479. [17] PDN, Cywinska A, Ball SL, deWaard JR. Biological identifications through DNA barcodes[J]. Proc Biol Sci, 2003, 270:313-321. [18] F, Coissac E, Taberlet P. Metabarcoding a new way to analyze biodiversity[J]. Biofutur, 2011, 3:30-32. [19] F, Deagle BE, Symondson WO, et al. Who is eating what:diet assessment using next generation sequencing[J]. Molecular Ecology, 2012, 21:1931-1950. [20] A. Soil molecular microbial ecology at age 20:methodological challenges for the future[J]. Soil Biol, 2000, 32:1499-1504. [21] G, de Wall E, Uitterlinden A. Profiling of complex microbial populations by DGGE of PCR-amplified genes coding for 16S rRNA[J]. Appl Env Microbiol, 1993, 59:695-700. [22] Schwieger F, Tebbe CC. A new approach to utilize PCR-single strand-conformation polymorphism for 16S rRNA based microbial community analysis[J]. Appl Env Microbiol, 1998, 64:4870-4876. [23] J, Jurgens K, Bruchmuller I, et al. Use of group-specific PCR primers for identification of chrysophytes by denaturing gradient gel electrophoresis[J]. Aquatic Microbial Ecology, 2005, 39:171-182. [24] Hebert PD, Stoeckle MY, Zemlak TS, Francis CM. Identification of birds through DNA barcodes[J]. PLoS Biol, 2004, 2:1657-1663. [25] ID, Hebert PDN. Biological identification of springtails(Collembola:Hexapoda)from the Canadian Arctic, using mitochondrial DNA barcodes[J]. Canadian Journal of Zoology, 2004, 82:749-754. [26] R, Carlsen T, Kumar S, et al. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing[J]. Molecular Ecology, 2012, 21:1897-1908. [27] FT, Jos K, Lars L, et al. Detection of a diverse marine fish fauna using environmental DNA from seawater samples[J]. PLoS One, 2012, 7(8):e41732. [28] Zhang XQ, Duan A, Zhang JG. Tree biomass estimation of Chinese fir(Cunninghamia lanceolata)based on bayesian method[J]. PLoS One, 2013, 8(11):e79868. [29] Ville K, Minna R, Markus H, et al. Single tree biomass modelling using airborne laser scanning[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2013, 85:66-73. [30] Pare D, Bernier P, Lafleur B, et al. Estimating stand-scale biomass, nutrient contents, and associated uncertainties for tree species of Canadian forests[J]. Can J Forest Res, 2013, 43:1084. [31] Teruhiko T, Toshifumi M, Hiroki Y, et al. Estimation of fish biomass using environmental DNA[J]. PLoS One, 2012, 7(4):e35868. [32] Francois P, Bruce E, William OC, et al. Who is eating what:diet assessment using next generation sequencing[J]. Molecular Ecology, 2012, 21:1931-1950. [33] Holechek JL, Vavra M, Pieper RD. Botanical composition determination of range diets:a review[J]. Journal of Range Management, 1982, 35:309-315. [34] Moreby SJ. An aid to the identification of arthropod fragments in the faeces of gamebird chicks(Galliformes)[J]. Ibis, 1988, 130:519-526. [35] Holland JM. The agroecology of carabid beetles[M]. UK:Intercept Ltd, 2002:111-136. [36] Jervis MA. Insects as natural enemies:a practical perspective. Berlin:Springer, 2005:299-434. [37] Symondson WOC. Molecular identification of prey in predator diets[J]. Molecular Ecology, 2002, 11:627-641. [38] Rothman JM, Chapman CA, Hansen JL, et al. Rapid assessment of the nutritional value of foods eaten by mountain gorillas:applying near-infrared reflectance spectroscopy to primatology[J]. International Journal of Primatology, 2009, 30:729-742. [39] Gratton C, Donaldson J, Vander Zanden MJ. Ecosystem linkages between lakes and the surrounding terrestrial landscape in northeast Iceland[J]. Ecosystems, 2008, 11:764-774. [40] Harper GL, Sheppard SK, Harwood JD, et al. Evaluation of temperature gradient gel electrophoresis for the analysis of prey DNA within the guts of invertebrate predators[J]. Bulletin of Entomological Research, 2006, 96:295-304. [41] Symondson WOC, Liddell JE. The Ecology of agricultural pests:biochemical approaches[M]. London:Chapman & Hall, 1996:457-468. [42] Foley WJ, Mcllwee A, Lawler I, et al. Ecological applications of near infrared reflectance spectroscopy-a tool for rapid, cost-effective prediction of the composition of plant and animal tissues and aspects of animal performance[J]. Oecologia, 1988, 116:293-305. [43] Jervis MA. Insects as natural enemies:a practical perspective[M]. Berlin:Springer, 2005:299-434. [44] Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reactionamplified genes coding for 16S rRNA[J]. Applied and Environmental Microbiology, 1993, 59:695-700. [45] A, Akkermans ADL, de Vos WD. Quantification of 16S rRNAs in complex bacterial communities by multiple competitive reverse transcription-PCR in temperature gradient gel electrophoresis fingerprints[J]. Applied and Environmental Microbiology, 1988, 64:4581-4587. [46] Shehzad W, Riaz T, Nawaz MA, et al. Carnivore diet analysis based on next generation sequencing:application to the leopard cat(Prionailurus bengalensis)in Pakistan[J]. Molecualr Ecology, 2012, 21:1951-1965. [47] Deagle BE, Kirkwood R, Jarman SN. Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces[J]. Molecualr Ecology, 2009, 18:2022-2038. [48] Murray DC, Bunce M, Cannell BL, et al. DNA-based faecal dietary analysis:a comparison of qPCR and high throughput sequencing approaches[J]. PLoS One, 2011, 6:e25776. [49] Bohmann K, Monadjem A, Lehmkuhl Noer C, et al. Molecular diet analysis of two African free-tailed bats(Molossidae)using high throughput sequencing[J]. PLoS One, 2011, 6:e21441. [50] Brown DS. Molecular analysis of the diet of british reptiles[D]. UK:Cardiff University, 2011. [51] Soininen EM, Valentini A, Coissac E, et al. Analysing diet of small herbivores:the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures[J]. Frontiers in Zoology, 2009, 6:16. [52] Raye G, Miquel C, Coissac E, et al. New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing:chamois diet in autumn as a case study[J]. Ecological Research, 2011, 26:265-276. [53] 朱怀诚, 欧阳舒. 孢子花粉与植物大化石:地质记录的差异及其古植物学意义[J]. 古生物学报, 2005, 44(2):161-174. [54] Traverse A. Palaeopalynolgoy[M]. Boston, London, Sydney, Wellington:UNWIN HYMAN, 1988:1-600. [55] Taylor TN. Paleobotany:an introduction to fossil plant biology[M]. New York:McGraw Hill Book Co, 1981:1-589. [56] Willerslev E. Diverse plant and animal genetic records from Holocene and Pleistocene sediments[J]. Science, 2003, 300:791-795. [57] Hofreiter M, Mead JI, Martin P, Poinar HN. Molecular caving[J]. Current Biology, 2003, 13:693-695. [58] Lydolph MC, Jacobsen J, Arctander P, et al. Beringian paleoecology inferred from permafrost-preserved fungal DNA[J]. Applied and Environmental Microbiology, 2005, 71:1012-1017. [59] Sonstebo JH, Gielly L, Brysting AK, et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate[J]. Molecular Ecology Resources, 2010, 10:1009-1018. [60] Andersen K, Bird KL, Rasmussen M, et al. Meta-barcoding of "dirt" DNA from soil reflects vertebrate biodiversity[J]. Molecular Ecology, 2011, 21:1966-1979. [61] Jorgensen T, Kjar KH, Haile JS, et al. Islands in the ice:detecting past vegetation on Greenlandic nunataks using historical records and sedimentary ancient DNA meta-barcoding[J]. Molecular Ecology, 2012, 21:1980-1988. [62] Yoccoz NG, Brathen KA, Gielly L, et al. DNA from soil mirrors plant taxonomic and growth form diversity[J]. Molecular Ecology, 2012, 21:3647-3655. [63] Mikkel WP, Aurelien G, Ludovic O, et al. A comparative study of ancient environmental DNA to pollen and macrofossils from lake sediments reveals taxonomic overlap and additional plant taxa[J]. Quaternary Science Reviews, 2013, 75:161-168. [64] Baird D, Hajibabaei M. Biomonitoring 2.0:a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing[J]. Molecular Ecology, 2012, 21:2039-2044. [65] Yoccoz NG. The future of environmental DNA in ecology[J]. Molecular Ecology, 2012, 21:2031-2038. |