生物技术通报 ›› 2020, Vol. 36 ›› Issue (12): 64-74.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1252
张盈1,2,3(), 吴小虎2(), 李晓刚3, 段婷婷1, 徐军2, 董丰收2, 刘新刚2, 郑永权2
收稿日期:
2020-10-12
出版日期:
2020-12-26
发布日期:
2020-12-22
作者简介:
张盈,女,硕士,助理研究员,研究方向:农药残留与环境毒理;E-mail:基金资助:
ZHANG Ying1,2,3(), WU Xiao-hu2(), LI Xiao-gang3, DUAN Ting-ting1, XU Jun2, DONG Feng-shou2, LIU Xin-gang2, ZHENG Yong-quan2
Received:
2020-10-12
Published:
2020-12-26
Online:
2020-12-22
摘要:
本实验研究了温室条件下,连续两年施用异噁草酮后土壤微生物群落组成及N转化功能微生物的响应。第二次施药后第7天、15天、30天、60天和90天采集土壤,测定异噁草酮残留量和相关微生物指标。研究结果显示异噁草酮降解半衰期为17.4 d。施药后第15天细菌拷贝数降低,Alpha多样性增加;真菌拷贝数在第15天和60天显著降低,Alpha多样性在第7天和第90天显著降低。主成分分析(PCoA)显示,整个培养期间细菌和真菌的群落组成显著改变。分子生态网络分析表明,异噁草酮增加分子生态网络中节点数、连接数、平均度和平均路径长度,显著改变模块枢纽与联络者。FAPROTAX功能预测结果表明异噁草酮主要降低反硝化作用。
张盈, 吴小虎, 李晓刚, 段婷婷, 徐军, 董丰收, 刘新刚, 郑永权. 土壤微生物对异噁草酮连续施用的响应[J]. 生物技术通报, 2020, 36(12): 64-74.
ZHANG Ying, WU Xiao-hu, LI Xiao-gang, DUAN Ting-ting, XU Jun, DONG Feng-shou, LIU Xin-gang, ZHENG Yong-quan. The Response of Soil Microbial Community to Repeated Application Clomazone[J]. Biotechnology Bulletin, 2020, 36(12): 64-74.
添加浓度/ (mg·kg-1) | 回收率/% | 平均回收率/% | RSD/% | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
0.1 | 87 | 96 | 85 | 84 | 86 | 88 | 5.5 |
0.5 | 99 | 101 | 95 | 93 | 94 | 96 | 3.6 |
5 | 102 | 101 | 103 | 104 | 99 | 102 | 1.9 |
表1 异噁草酮在土壤中的回收率及相对标准偏差(n=5)
添加浓度/ (mg·kg-1) | 回收率/% | 平均回收率/% | RSD/% | ||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |||
0.1 | 87 | 96 | 85 | 84 | 86 | 88 | 5.5 |
0.5 | 99 | 101 | 95 | 93 | 94 | 96 | 3.6 |
5 | 102 | 101 | 103 | 104 | 99 | 102 | 1.9 |
施药天数 | 平均残留量(mg·kg-1) | 消解率/% |
---|---|---|
1 | 5.0±0.26 | - |
7 | 4.3±0.38 | 15.2±8.8 |
15 | 3.0±0.29 | 41.2±7.0 |
30 | 1.4±0.19 | 72.1±3.9 |
60 | 1.1±0.12 | 77.8±2.2 |
90 | 0.5±0.04 | 90.7±0.1 |
方程 | Y=4.7843e-0.04721t+0.5989e-0.0014t | |
r2 | 0.9825 | |
T1/2 | 17.4 |
表2 异噁草酮在粉砂质壤土中的残留量测定
施药天数 | 平均残留量(mg·kg-1) | 消解率/% |
---|---|---|
1 | 5.0±0.26 | - |
7 | 4.3±0.38 | 15.2±8.8 |
15 | 3.0±0.29 | 41.2±7.0 |
30 | 1.4±0.19 | 72.1±3.9 |
60 | 1.1±0.12 | 77.8±2.2 |
90 | 0.5±0.04 | 90.7±0.1 |
方程 | Y=4.7843e-0.04721t+0.5989e-0.0014t | |
r2 | 0.9825 | |
T1/2 | 17.4 |
样本 | CK | T1 | |
---|---|---|---|
相似度阈值 | 0.81 | 0.81 | |
节点数 | 390 | 460 | |
连接数 | 674 | 853 | |
经验网络 | 平均度 | 3.456 | 3.709 |
平均路径长度 | 5.405 | 6.062 | |
平均聚类系数 | 0.244 | 0.228 | |
R2 | 0.937 | 0.919 | |
模块性 | 0.76(63) | 0.75(72) | |
随机网络 | 平均积聚系数 | 0.018±0.005 | 0.024±0.005 |
平均路径长度 | 4.178±0.059 | 4.028±0.052 | |
模块性 | 0.548±0.007 | 0.520±0.006 |
表3 T1和CK的网络拓扑特性
样本 | CK | T1 | |
---|---|---|---|
相似度阈值 | 0.81 | 0.81 | |
节点数 | 390 | 460 | |
连接数 | 674 | 853 | |
经验网络 | 平均度 | 3.456 | 3.709 |
平均路径长度 | 5.405 | 6.062 | |
平均聚类系数 | 0.244 | 0.228 | |
R2 | 0.937 | 0.919 | |
模块性 | 0.76(63) | 0.75(72) | |
随机网络 | 平均积聚系数 | 0.018±0.005 | 0.024±0.005 |
平均路径长度 | 4.178±0.059 | 4.028±0.052 | |
模块性 | 0.548±0.007 | 0.520±0.006 |
OTUs | 注释信息 | 角色 |
---|---|---|
OTU3456 | p__Gemmatimonadota;c__Gemmatimonadetes;o__Gemmatimonadales;f__Gemmatimonadaceae;g__norank_f__Gemmatimonadaceae | CK-模块枢纽 |
OTU3639 | p__Actinobacteriota;c__Actinobacteria;o__Propionibacteriales;f__Nocardioidaceae;g__Nocardioides;s__unclassified_g__Nocardioides | CK-模块枢纽 |
OTU3738 | p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Sphingomonas;s__unclassified_g__Sphingomonas | CK-模块枢纽 |
OTU3739 | p__Acidobacteriota;c__Vicinamibacteria;o__Vicinamibacterales;f__Vicinamibacteraceae;g__norank_f__Vicinamibacteraceae | CK-模块枢纽 |
OTU4502 | p__Mortierellomycota;c__Mortierellomycetes;o__Mortierellales;f__Mortierellaceae;g__Mortierella;s__Mortierella_alpina | CK-模块枢纽 |
OTU3372 | p_Patescibacteria;c_Saccharimonadia;o_Saccharimonadales;f_Saccharimonadaceae;g_TM7a;s_uncultured_bacterium_g_TM7a | CK-联络者 |
OTU3422 | p__Acidobacteriota;c__Vicinamibacteria;o__Vicinamibacterales;f__Vicinamibacteraceae;g__norank_f__Vicinamibacteraceae; | CK-联络者 |
OTU3721 | p__Patescibacteria;c__Saccharimonadia;o__Saccharimonadales;f__norank_o__Saccharimonadales;g__norank_f__norank_o__Saccharimonadales | CK-联络者 |
OTU2896 | p_Acidobacteriota;c_Blastocatellia;o_11-24;f_norank_o__11-24 | T1-模块枢纽 |
OTU3423 | p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhizobiales_Incertae_Sedis;g__Bauldia;s__uncultured_Alphaproteobacteria_bacterium_g__Bauldia | T1-模块枢纽 |
OTU3461 | p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Novosphingobium | T1-模块枢纽 |
OTU3507 | p__Chloroflexi;c__Anaerolineae;o__SBR1031;f__norank_o__SBR1031;g__norank_f__norank_o__SBR1031 | T1-模块枢纽 |
OTU3540 | p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhizobiales_Incertae_Sedis;g__Nordella | T1-模块枢纽 |
OTU3717 | p__Acidobacteriota;c__Vicinamibacteria;o__Vicinamibacterales;f__Vicinamibacteraceae;g__norank_f__Vicinamibacteraceae | T1-模块枢纽 |
OTU3725 | p__Acidobacteriota;c__Blastocatellia;c__Blastocatellia;f__Blastocatellaceae;g__norank_f__Blastocatellaceae | T1-模块枢纽 |
OTU3350 | p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Hyphomicrobiaceae;g_Hyphomicrobium;s_Hyphomicrobium_vulgare | T1-联络者 |
OTU3604 | p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Rhodanobacteraceae;g__Ahniella;s__uncultured_bacterium_g__Ahniella | T1-联络者 |
OTU3672 | p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Altererythrobacter;s__unclassified_g__Altererythrobacter | T1-联络者 |
OTU3720 | p__Proteobacteria;c__Alphaproteobacteria;o__Dongiales;f__Dongiaceae;g__Dongia;s__unclassified_g__Dongia | T1-联络者 |
表4 不同处理中的关键OTUs
OTUs | 注释信息 | 角色 |
---|---|---|
OTU3456 | p__Gemmatimonadota;c__Gemmatimonadetes;o__Gemmatimonadales;f__Gemmatimonadaceae;g__norank_f__Gemmatimonadaceae | CK-模块枢纽 |
OTU3639 | p__Actinobacteriota;c__Actinobacteria;o__Propionibacteriales;f__Nocardioidaceae;g__Nocardioides;s__unclassified_g__Nocardioides | CK-模块枢纽 |
OTU3738 | p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Sphingomonas;s__unclassified_g__Sphingomonas | CK-模块枢纽 |
OTU3739 | p__Acidobacteriota;c__Vicinamibacteria;o__Vicinamibacterales;f__Vicinamibacteraceae;g__norank_f__Vicinamibacteraceae | CK-模块枢纽 |
OTU4502 | p__Mortierellomycota;c__Mortierellomycetes;o__Mortierellales;f__Mortierellaceae;g__Mortierella;s__Mortierella_alpina | CK-模块枢纽 |
OTU3372 | p_Patescibacteria;c_Saccharimonadia;o_Saccharimonadales;f_Saccharimonadaceae;g_TM7a;s_uncultured_bacterium_g_TM7a | CK-联络者 |
OTU3422 | p__Acidobacteriota;c__Vicinamibacteria;o__Vicinamibacterales;f__Vicinamibacteraceae;g__norank_f__Vicinamibacteraceae; | CK-联络者 |
OTU3721 | p__Patescibacteria;c__Saccharimonadia;o__Saccharimonadales;f__norank_o__Saccharimonadales;g__norank_f__norank_o__Saccharimonadales | CK-联络者 |
OTU2896 | p_Acidobacteriota;c_Blastocatellia;o_11-24;f_norank_o__11-24 | T1-模块枢纽 |
OTU3423 | p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhizobiales_Incertae_Sedis;g__Bauldia;s__uncultured_Alphaproteobacteria_bacterium_g__Bauldia | T1-模块枢纽 |
OTU3461 | p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Novosphingobium | T1-模块枢纽 |
OTU3507 | p__Chloroflexi;c__Anaerolineae;o__SBR1031;f__norank_o__SBR1031;g__norank_f__norank_o__SBR1031 | T1-模块枢纽 |
OTU3540 | p__Proteobacteria;c__Alphaproteobacteria;o__Rhizobiales;f__Rhizobiales_Incertae_Sedis;g__Nordella | T1-模块枢纽 |
OTU3717 | p__Acidobacteriota;c__Vicinamibacteria;o__Vicinamibacterales;f__Vicinamibacteraceae;g__norank_f__Vicinamibacteraceae | T1-模块枢纽 |
OTU3725 | p__Acidobacteriota;c__Blastocatellia;c__Blastocatellia;f__Blastocatellaceae;g__norank_f__Blastocatellaceae | T1-模块枢纽 |
OTU3350 | p_Proteobacteria;c_Alphaproteobacteria;o_Rhizobiales;f_Hyphomicrobiaceae;g_Hyphomicrobium;s_Hyphomicrobium_vulgare | T1-联络者 |
OTU3604 | p__Proteobacteria;c__Gammaproteobacteria;o__Xanthomonadales;f__Rhodanobacteraceae;g__Ahniella;s__uncultured_bacterium_g__Ahniella | T1-联络者 |
OTU3672 | p__Proteobacteria;c__Alphaproteobacteria;o__Sphingomonadales;f__Sphingomonadaceae;g__Altererythrobacter;s__unclassified_g__Altererythrobacter | T1-联络者 |
OTU3720 | p__Proteobacteria;c__Alphaproteobacteria;o__Dongiales;f__Dongiaceae;g__Dongia;s__unclassified_g__Dongia | T1-联络者 |
[1] | Macleod IL. The use of clomazone as a postemergence herbicidein poppies(Papaver somniferum)[J]. Weeds, 1997,61:1457. |
[2] | 刘长令. 世界农药大全:除草剂卷[M]. 北京: 化学工业出版社, 2002. |
Liu CL. The world pesticide compendium:the volume of herbicide[M]. Beijing: Chemical Industry Press, 2002. | |
[3] | 刘亚光, 李洁, 唐广顺. 异噁草酮对土壤微生物和土壤酶活性的影响[J]. 植物保护, 2010,36(3):85-88. |
Liu YG, Li J, Tang GS. Influences of clomazone on soil microorganisms and enzyme activity[J]. Plant Protection, 2010,36(3):85-88. | |
[4] | Schloter M, Nannipieri P, Sorensen SJ. Microbial indicators for soil quality[J]. Biology and Fertility of Soils, 2018,54:1-10. |
[5] |
Tomco PL, Holmes WE, Tjeerdema RS. Biodegradation of clomazone in a California rice field soil:carbon allocation and community effects[J]. Journal of Agricultural and Food Chemistry, 2013,61:2618-2624.
URL pmid: 23432155 |
[6] | Du PQ, Wu XH, Xu J, et al. Clomazone influence soil microbial community and soil nitrogen cycling[J]. Science of the Total Environment, 2018,644:475-485. |
[7] | 朱瑞芬, 刘杰琳, 王建丽, 等. 基于分子生态学网络分析松嫩退化草地土壤微生物群落对施氮的响应[J]. 中国农业科学, 2020,53(13):2637-2646. |
Zhu RF, Liu JL, Wang JL, et al. Molecular ecological network analyses revealing the effects of nitrogen application on soil microbial community in the degraded grasslands[J]. Scientia Agricultura Sinica, 2020,53(13):2637-2646. | |
[8] | 杜雄峰, 厉舒祯, 冯凯, 等. 农牧交错带草地土壤剖面微生物总量、多样性和互作网络的垂直分布特征[J]. 微生物学通报, 2020,47(9):2789-2806. |
Du XF, Li SZ, Feng K, et al. Vertical distribution features of microbial quantity, diversity and interactions along soil profiles in an agropasture grassland[J]. Microbiology China, 2020,47(9):2789-2806. | |
[9] | 马垒, 赵文慧, 郭志彬, 等. 长期不同磷肥施用量对砂姜黑土真菌多样性、群落组成和种间关系的影响[J]. 生态学报, 2019,39(11):4158-4167. |
Ma L, Zhao WH, Guo ZB, et al. Effects of long-term application of phosphorus fertilizer on fungal community diversity, composition and intraspecific interactions and variation with application rate in a lime concretion black soil[J]. Acta Ecologica Sinica, 2019,39(11):4158-4167. | |
[10] | Mendes LW, Raaijmakers JM, et al. Influence of resistance breeding in common bean on rhizosphere microbiome composition and function[J]. The ISME Journal, 2018,675:212-224. |
[11] | Gu SS, Hu QL, Cheng YQ, et al. Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea(Camellia sinensis)plantation soils[J]. Soil & Tillage Research, 2019,195, 104356. |
[12] |
Xu N, Tan G, Wang H, et al. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure[J]. European Journal of Soil Biology, 2016,74:1-8.
doi: 10.1016/j.ejsobi.2016.02.004 URL |
[13] |
Adams RI, Miletto M, et al. Dispersal in microbes:fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances[J]. ISME J, 2013,7(7):1262-1273.
URL pmid: 23426013 |
[14] | Deng Y, Jiang YH, Yang YF, et al. Molecular ecological network analyses[J]. BMC Bioinformatics, 2012,13(1):113. |
[15] |
Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome[J]. Science, 2016,353:1272-1277.
doi: 10.1126/science.aaf4507 URL pmid: 27634532 |
[16] | 中华人民共和国农业行业标准 农作物中农药残留试验准则: NY/T 788-2018[S]. 北京: 中国标准出版社, 2018. |
Agricultural standard of the People’s Republic of China-Guideline on Pesticide Residue Trials on Crops:NY/T 788-2018[S]. Beijing: Standards Press of China, 2018. | |
[17] |
Brown KS, Hill CC, Calero GA, et a1. The statistical mechanics of complex signaling networks:nerve growth factor signaling[J]. Physical Biology, 2004,1:184-195.
doi: 10.1088/1478-3967/1/3/006 URL pmid: 16204838 |
[18] |
Lee S, Gan J, Kim JS, et al. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases[J]. Environmental Toxicology and Chemistry. 2004,23, 1-6.
URL pmid: 14768859 |
[19] |
Wu XH, Xu J, Dong FS, et al. Responses of soil microbial community to different concentration of fomesafen[J]. Journal of Hazardous Materials, 2014,273:155-164.
URL pmid: 24731936 |
[20] | Du PQ, Wu XH, Xu J, et al. Effects of trifluralin on the soil microbial community and functional groups involved in nitrogen cycling[J]. J Hazard Mater, 2018,353:204-213. |
[21] | Zhang BG, Zhang HX, Jin B, et al. Effect of cypermethrin insecticide on the microbial community in cucumber phyllosphere[J]. Journal of Environmental Sciences, 2008,20:1356-1362. |
[22] | Huber KJ, Pascual J, Foesel BU, et al. Blastocatellaceae. Bergey’s Manual of Systematics of Archaea and Bacteria[M]. John Wiley & Sons, Ltd, 2017. |
[23] |
Yan QX, Hong Q, Han P, et al. Isolation and characterization of a carbofuran-degrading strain Novosphingobium sp. FND-3FEMS[J]. Microbiol Lett, 2007,271:207-213.
doi: 10.1111/fml.2007.271.issue-2 URL |
[24] |
Suzuki S, Hiraishi A. Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments[J]. J Gen Appl Microbiol, 2007,53:221-228.
URL pmid: 17878661 |
[25] |
Huber KJ, Overmann J. Vicinamibacteraceae fam. nov. the first described family within the subdivision 6 Acidobacteria[J]. Int J Syst Evol Microbiol, 2018,68(7):2331-2334.
doi: 10.1099/ijsem.0.002841 URL pmid: 29809123 |
[26] | Matsumoto M, Iwama D, Arakaki A, et al. Altererythrobacter ishigakiensis sp. nov. an astaxanthin-producing bacterium isolated from a marine sediment[J]. International Journal of Systematic & Evolutionary Microbiology, 2011,61(12):2956. |
[27] |
Das S, Gwon HS, Khan MI, et al. Taxonomic and functional responses of soil microbial communities to slag-based fertilizer amendment in rice cropping systems[J]. Environment International, 2019,127:531-539.
URL pmid: 30981911 |
[28] |
Fang W, Yan D, Wang X, et al. Responses of nitrogen-cycling microorganisms to dazomet fumigation[J]. Frontiers in Microbiology, 2018,9:2529.
URL pmid: 30405582 |
[1] | 陈楚雯, 李洁, 赵瑞鹏, 刘媛, 吴锦波, 李志雄. 藏鸡GPX3基因的克隆、组织表达谱研究及功能预测[J]. 生物技术通报, 2023, 39(3): 311-320. |
[2] | 李颖, 龙长梅, 蒋标, 韩丽珍. 两株PGPR菌株的花生定殖及对根际细菌群落结构的影响[J]. 生物技术通报, 2022, 38(9): 237-247. |
[3] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[4] | 王子寅, 刘秉儒, 李子豪, 赵晓玉. 荒漠草原柠条灌丛堆不同发育阶段土壤细菌群落结构特征[J]. 生物技术通报, 2022, 38(7): 205-214. |
[5] | 祝静, 于存. 长枝木霉菌肥对玉米生长、土壤肥力和根际微生物的影响[J]. 生物技术通报, 2022, 38(4): 230-241. |
[6] | 高惠惠, 贾晨波, 韩琴, 苏建宇, 徐春燕. 宁杞7号枸杞根腐病发生的微生物学机制[J]. 生物技术通报, 2022, 38(12): 244-251. |
[7] | 颜珲璘, 芦光新, 邓晔, 顾松松, 颜程良, 马坤, 赵阳安, 张海娟, 王英成, 周学丽, 窦声云. 高寒地区根瘤菌拌种对禾/豆混播土壤微生物群落的影响[J]. 生物技术通报, 2022, 38(10): 204-215. |
[8] | 刘传和, 贺涵, 何秀古, 刘开, 邵雪花, 赖多, 匡石滋, 肖维强. 不同连作年限菠萝园土壤差异代谢物和细菌群落结构分析[J]. 生物技术通报, 2021, 37(8): 162-175. |
[9] | 吕燕, 刘建利, 李靖宇, 候琳琳, 孙敏, 苟琪. 不同品种和产区宁夏枸杞根系AMF多样性[J]. 生物技术通报, 2021, 37(6): 36-48. |
[10] | 武杞蔓, 张金梅, 李玥莹, 张颖. 有益微生物菌肥对农作物的作用机制研究进展[J]. 生物技术通报, 2021, 37(5): 221-230. |
[11] | 章妮, 暴涵, 左弟召, 陈克龙. 降水变化驱动下的高寒湿地产甲烷菌群落特征变化[J]. 生物技术通报, 2021, 37(11): 276-284. |
[12] | 李俊领, 马晓寒, 张豫丹, 贾玮, 许自成. 土壤微生物与烟草青枯病发生关系的研究进展[J]. 生物技术通报, 2020, 36(9): 88-99. |
[13] | 王宏杰, 刘绍东, 刘瑞华, 张思平, 杨君, 庞朝友. 轮作对棉花根际土壤细菌群落的影响[J]. 生物技术通报, 2020, 36(9): 117-124. |
[14] | 黄婷, 方源, 冯舟, 沈和, 聂勇, 郑鑫, 汪家权, 许子牧. 高通量测序技术解析中学校园细菌群落的特征组成[J]. 生物技术通报, 2020, 36(8): 96-103. |
[15] | 张永敏, 王天慧, 王萍. 沉积物中菲高效降解菌群的筛选鉴定及降解特性[J]. 生物技术通报, 2020, 36(6): 128-135. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||