[1] Brandt A, Gr?svik J, Hallett JP, et al. Deconstruction of lignocellu-losic biomass with ionic liquids[J]. Green Chemistry, 2013, 15(3):550-583. [2] Himmel ME, Ding SY, Johnson DK, et al. Biomass recalcitrance:engineering plants and enzymes for biofuels production[J]. Science, 2007, 315(5813):804-807. [3] 曲音波, 王禄山. 生物质的抗降解性及其生物炼制中的科学问题[M]. 中国基础科学, 2009, 11(5):55-58. [4] 孟凡辉, 蒋绪恺, 刘琳, 等. 纤维素酶解速度的可视化表征与限制因素分析[J]. 生物化学与生物物理进展, 2015, 42(3):201-210. [5] Burton RA, Gidley MJ, Fincher GB. Heterogeneity in the chemistry, structure and function of plant cell walls[J]. Nature Chemical Biology, 2010, 6(10):724-732. [6] Sarkar P, Bosneaga E, Auer M. Plant cell walls throughout evolution:towards a molecular understanding of their design principles[J]. Journal of Experimental Botany, 2009, 60(13):3615-3635. [7] King BC, Waxman KD, Nenni NV, et al. Arsenal of plant cell wall degrading enzymes reflects host preference among plant pathogenic fungi[J]. Biotechnology for Biofuels, 2011, 4(4):1-14. [8] Fangel JU, Ulvskov P, Knox JP, et al. Cell wall evolution and diversity[J]. Frontiers in Plant Science, 2012, 3(152):1-8. [9] 王帅, 张怀强, 王禄山, 等. 碳水化合物活性酶数据库(CAZy)及其研究趋势[J]. 生物加工过程, 2014, 12(1):102-108. [10] Ribeiro DA, Cota J, Alvarez TM, et al. The Penicillium echinulatum secretome on sugar cane bagasse[J]. PLoS One, 2012, 7(12):1-9. [11] Liepman AH, Wightman R, Geshi N, et al. Arabidopsis-a powerful model system for plant cell wall research[J]. The Plant Journal, 2010, 61(6):1107-1121. [12] Hansen SF, Harholt J, Oikawa A, et al. Plant glycosyltransferases beyond CAZy:a perspective on DUF families[J]. Frontiers in Plant Science, 2012, 3(59):1-10. [13] Henrissat B, Coutinho PM, Davies GJ. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana[M]. Plant Cell Walls Springer, 2001:55-72. [14] Liu G, Zhang L, Wei X, et al. Genomic and secretomic analyses reveal unique features of the lignocellulolytic enzyme system of Penicillium decumbens[J]. PLoS One, 2013, 8(2):1-12. [15] Zhao X, Zhang L, Liu D. Biomass recalcitrance. Part I:the chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose[J]. Biofuels, Bioproducts and Biorefining, 2012, 6(4):465-482. [16] Glass NL, Schmoll M, Cate JH, et al. Plant cell wall deconstruction by ascomycete fungi[J]. Annual Review of Microbiology, 2013, 67:477-498. [17] Zhao Z, Shklyaev OE, Nili A, et al. Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis[J]. The Journal of Physical Chemistry A, 2013, 117(12):2580-2589. [18] Chundawat SP, Beckham GT, Himmel ME, et al. Deconstruction of lignocellulosic biomass to fuels and chemicals[J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2:121-145. [19] Zhao Z, Liu H, Wang C, et al. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi[J]. BMC Genomics, 2013, 14(1):274-289. [20] Juhasz T, Szengyel Z, Reczey K, et al. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources[J]. Process Biochemistry, 2005, 40(11):3519-3525. [21] Stricker AR, Mach RL, De Graaff LH. Regulation of transcription of cellulases-and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina(Trichoderma reesei)[J]. Applied Microbiology and Biotechnology, 2008, 78(2):211-220. [22] Goyal H, Seal D, Saxena R. Bio-fuels from thermochemical conversion of renewable resources:a review[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2):504-517. [23] Li Y, Horsman M, Wu N, et al. Biofuels from microalgae[J]. Biotechnology progress, 2008, 24(4):815-820. [24] Pauly M, Gille S, Liu L, et al. Hemicellulose biosynthesis[J]. Planta, 2013, 238(4):627-642. [25] Crutzen PJ, Mosier AR, Smith KA, et al. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels[J]. Atmospheric Chemistry and Physics, 2008, 8(2):389-395. [26] Burton RA, Wilson SM, Hrmova M, et al. Cellulose synthase-like CslF genes mediate the synthesis of cell wall(1, 3;1, 4)-?-D-glucans[J]. Science, 2006, 311(5769):1940-1942. [27] Huntley ME, Redalje DG. CO2 mitigation and renewable oil from photosynthetic microbes:a new appraisal[R]. Mitigation and adaptation strategies for global change, 2007, 12(4):573-608. [28] Gille S, de Souza A, Xiong G, et al. O-acetylation of Arabidopsis hemicellulose xyloglucan requires AXY4 or AXY4L, proteins with a TBL and DUF231 domain[J]. The Plant Cell Online, 2011, 23(11):4041-4053. [29] Zabotina OA, Avci U, Cavalier D, et al. Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis[J]. Plant Physiology, 2012, 159(4):1367-1384. [30] Rose JK, Braam J, Fry SC, et al. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis:current perspectives and a new unifying nomenclature[J]. Plant and Cell Physiology, 2002, 43(12):1421-1435. [31] Pauly M, Gille S, Liu L, et al. Hemicellulose biosynthesis[J]. Planta, 2013, 238(4):627-642. [32] Chiniquy D, Sharma V, Schultink A, et al. XAX1 from glycosyltransferase family 61 mediates xylosyltransfer to rice xylan[J]. Proceedings of the National Academy of Sciences, 2012, 109(42):17117-17122. [33] Anders N, Wilkinson MD, Lovegrove A, et al. Glycosyl transferases in family 61 mediate arabinofuranosyl transfer onto xylan in grasses[J]. Proceedings of the National Academy of Sciences, 2012, 109(3):989-993. [34] Caffall KH, Mohnen D. The structure, function, and biosynthesis of plant cell wall pectic polysaccharides[J]. Carbohydrate Research, 2009, 344(14):1879-1900. [35] Atmodjo MA, Sakuragi Y, Zhu X, et al. Galacturonosyltransferase(GAUT)1 and GAUT7 are the core of a plant cell wall pectin biosynthetic homogalacturonan:galacturonosyltransferase complex[J]. Proceedings of the National Academy of Sciences, 2011, 108(50):20225-20230. [36] Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma[J]. Genome Biology, 2011, 12(4):R40. [37] Martens-Uzunova ES, Schaap PJ. Assessment of the pectin degrading enzyme network of Aspergillus niger by functional genomics[J]. Fungal Genetics and Biology, 2009, 46(1):S170-S179. [38] Sweeney MD, Xu F. Biomass converting enzymes as industrial biocatalysts for fuels and chemicals:recent developments[J]. Catalysts, 2012, 2(4):244-263. [39] 张小梅, 李单单, 王禄山, 等. 纤维素酶家族及其催化结构域分子改造的新进展[J]. 生物工程学报, 2013, 29(4):422-433. [40] van den Brink J, de Vries RP. Fungal enzyme sets for plant polysaccharide degradation[J]. Applied Microbiology and Biotechnology, 2011, 91(6):1477-1492. [41] Vlasenko E, Schülein M, Cherry J, et al. Substrate specificity of family 5, 6, 7, 9, 12, and 45 endoglucanases[J]. Bioresource Technology, 2010, 101(7):2405-2411. [42] Zhang Q, Zhang X, Wang P, et al. Determination of the action modes of cellulases from hydrolytic profiles over a time course using fluorescence-assisted carbohydrate electrophoresis[J]. Electrophoresis, 2015, 36(6):910-917. [43] Phillips CM, Beeson WT, Cate JH, et al. Cellobiose dehydrogenase and a copper-dependent polysaccharide monooxygenase potentiate cellulose degradation by Neurospora crassa[J]. ACS Chemical Biology, 2011, 6(12):1399-1406. [44] Berka RM, Grigoriev IV, Otillar R, et al. Comparative genomic ana-lysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris[J]. Nature Biotechnology, 2011, 29(10):922-927. [45] Wang M, Cai J, Huang L, et al. High-level expression and efficient purification of bioactive swollenin in Aspergillus oryzae[J]. Applied Biochemistry and Biotechnology, 2010, 162(7):2027-2036. [46] Foreman PK, Brown D, Dankmeyer L, et al. Transcriptional regulation of biomass-degrading enzymes in the filamentous fungus Trichoderma reesei[J]. Journal of Biological Chemistry, 2003, 278(34):31988-31997. [47] Eijsink VG, Vaaje-Kolstad G, V?rum KM, et al. Towards new enzymes for biofuels:lessons from chitinase research[J]. Trends in Biotechnology, 2008, 26(5):228-235. [48] Polizeli M, Rizzatti A, Monti R, et al. Xylanases from fungi:properties and industrial applications[J]. Applied Microbiology and Biotechnology, 2005, 67(5):577-591. [49] Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae[J]. Nature, 2005, 438(7071):1157-1161. [50] Master E, Zheng Y, Storms R, et al. A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger:recombinant expression, purification and characterization[J]. Journal of Biochemistry, 2008, 411:161-170. [51] Do BC, Dang TT, Berrin JG, et al. Cloning, expression in Pichia pastoris, and characterization of a thermostable GH5 mannan endo-1,4-β-mannosidase from Aspergillus niger BK01[J]. Microbial Cell Factories, 2009, 8(1):59-71. [52] Boyce A, Walsh G. Production, purification and application-relevant characterisation of an endo-1,3(4)-β-glucanase from Rhizomucor miehei[J]. Applied Microbiology and Biotechnology, 2007, 76(4):835-841. [53] McCarthy T, Hanniffy O, Savage AV, et al. Catalytic properties and mode of action of three endo-β-glucanases from Talaromyces emersonii on soluble β-1,4-and β-1,3;1,4-linked glucans[J]. International Journal of Biological Macromolecules, 2003, 33(1):141-148. [54] De Vries R, Van Grieken C, VanKuyk P, et al. The value of genome sequences in the rapid identification of novel genes encoding specific plant cell wall degrading enzymes[J]. Current Genomics, 2005, 6(3):157-187. [55] Duffaud GD, McCutchen CM, Leduc P, et al. Purification and characterization of extremely thermostable beta-mannanase, beta-mannosidase, and alpha-galactosidase from the hyperthermophilic eubacterium Thermotoga neapolitana 5068[J]. Applied and Environmental Microbiology, 1997, 63(1):169-177. [56] De Vries RP, Kester H, Poulsen CH, et al. Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides[J]. Carbohydrate Research, 2000, 327(4):401-410. [57] Kormelink FJ, Gruppen H, Vi?tor RJ, et al. Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans[J]. Carbohydrate Research, 1993, 249(2):355-367. [58] Mertens JA, Bowman MJ. Expression and characterization of fifteen Rhizopus oryzae 99-880 polygalacturonase enzymes in Pichia pastoris[J]. Current Microbiology, 2011, 62(4):1173-1178. [59] Kenneth Keegstra NR. Plant glycosyltransferases[J]. Current Opinion in Plant Biology, 2001, 4(3):219-224. [60] Burton RA, Gidley MJ, Fincher GB. Heterogeneity in the chemistry, structure and function of plant cell walls[J]. Nature Chemical Biology, 2010, 6(10):724-732. |