[1] Gaj T, Gersbach CA, Barbas CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 2013, 31(7):397-405. [2] Moscou MJ, Bogdanove AJ. A Simple Cipher Governs DNA Recognition by TAL Effectors[J]. Science, 2009, 326(5959):1501. [3] Chen L, Tang L, Xiang H, et al. Advances in genome editing technology and its promising application in evolutionary and ecological studies[J]. GigaScience, 2014, 3:24. [4] Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2):757-761. [5] Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors[J]. Science, 2009, 326(5959):1509-1512. [6] Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors:discovery and function[J]. Annual Review of Phytopathology, 2010, 48:419-436. [7] Huang P, Xiao A, Zhou MG, et al. Heritable gene targeting in zebrafish using customized TALENs[J]. Nature Biotechnology, 2011, 29(8):699-700. [8] Miller JC, Tan S, Qiao G, et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology, 2011, 29(2):143-148. [9] Szurek B, Rossier O, Hause G, et al. Type III-dependent translocation of the Xanthomonas AvrBs3 protein into the plant cell[J]. Mol Microbiol, 2002, 46(1):13-23. [10] Mussolino C, Morbitzer R, Lutge F, et al. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity[J]. Nucleic Acids Research, 2011, 39(21):9283-9293. [11] Li T, Liu B, Spalding MH, et al. High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nature Biotechnology, 2012, 30(5):390-392. [12] Bacman SR, Williams SL, Pinto M, et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs[J]. Nature Medicine, 2013, 19(9):1111-1113. [13] Cermak T, Doyle EL, Christian M, et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting[J]. Nucleic Acids Research, 2011, 39(12):e82. [14] Weber E, Gruetzner R, Werner S, et al. Assembly of designer TAL effectors by Golden Gate cloning[J]. PloS One, 2011, 6(5):e19722. [15] Zhang F, Cong L, Lodato S, et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription[J]. Nature Biotechnology, 2011, 29(2):149-153. [16] Sanjana NE, Cong L, Zhou Y, et al. A transcription activator-like effector toolbox for genome engineering[J]. Nature Protocols, 2012, 7(1):171-192. [17] Reyon D, Tsai SQ, Khayter C, et al. FLASH assembly of TALENs for high-throughput genome editing[J]. Nature Biotechnology, 2012, 30(5):460-465. [18] Reyon D, Maeder ML, Khayter C, et al. Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly[J]. Current Protocols in Molecular Biology, 2013, Chapter 12:Unit 12.6. [19] Schmid-Burgk JL, Schmidt T, Kaiser V, et al. A ligation-independent cloning technique for high-throughput assembly of transcription activator-like effector genes[J]. Nature Biotechnology, 2013, 31(1):76-81. [20] Briggs AW, Rios X, Chari R, et al. Iterative capped assembly:rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers[J]. Nucleic Acids Research, 2012, 40(15):e117. [21] Li L, Piatek MJ, Atef A, et al. Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification[J]. Plant Mol Biol, 2012, 78(4-5):407-416. [22] Sander JD, Cade L, Khayter C, et al. Targeted gene disruption in somatic zebrafish cells using engineered TALENs[J]. Nature Biotechnology, 2011, 29(8):697-698. [23] Larsen NB, Rasmussen M, Rasmussen L J. Nuclear and mitochond-rial DNA repair:similar pathways?[J]. Mitochondrion, 2005, 5(2):89-108. [24] 沈延, 肖安, 黄鹏, 等. 类转录激活因子效应物核酸酶(TALEN)介导的基因组定点修饰技术[J]. 遗传, 2013, 35(4):395-409.
|