[1] Ebbole DJ. Magnaporthe as a model for understanding host-pathogen interactions[J]. Annual Review of Phytopathology, 2007, 45(1):437-456. [2] Wilson RA, Talbot NJ. Under pressure:investigating the biology of plant infection by Magnaporthe oryzae[J]. Nature Reviews Microbiology, 2009, 7(3):185-195. [3] Sackin H. Mechanosensitive channels[J]. Annual Review of Physiology, 1995, 57(1):333-353. [4] Martinac B. Mechanosensitive ion channels:molecules of mechanotransduction[J]. J Cell Sci, 2004, 117(12):2449-2460. [5] Bass RB, Strop P, Barclay M, et al. Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel[J]. Science, 2002, 298(5598):1582-1587. [6] Booth IR, Paul B. The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves[J]. Journal of Bacteriology, 2012, 194(18):4802-4809. [7] Haswell ES. MscS-like proteins in plants[J]. Current Topics in Membranes, 2007, 58(6):329-359. [8] Lee CP, Maksaev G, Jensen GS, et al. MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress[J]. Plant Journal, 2016, 88(5):809-825. [9] Haswell ES, Meyerowitz EM. MscS-like proteins control plastid size and ahape in Arabidopsis thaliana[J]. Current Biology, 2006, 16(1):1-11. [10] Hamilton ES, Jensen GS, Maksaev G, et al. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination[J]. Science, 2015, 350(6259):438-441. [11] Haswell ES, Peyronnet R, Barbier-Brygoo H, et al. Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root[J]. Current Biology, 2008, 18(10):730-734. [12] Veley KM, Grigory M, Frick EM, et al. Arabidopsis MSL10 has a regulated cell death signaling activity that is separable from its mechanosensitive ion channel activity[J]. Plant Cell, 2014, 26 (7):3115-3131. [13] Yoshitaka N, Kenta F, Masahiro S, et al. Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas[J]. Proc Natl Acad Sci USA, 2007, 104(14):5883-5888. [14] Nakayama Y, Yoshimura K, Iida H. Organellar mechanosensitive channels in fission yeast regulate the hypoosmotic shock response[J]. Nature Communications, 2012, 3(8):2543-2544. [15] Peiter E, Fischer MK, Roberts SK, et al. The Saccharomyces cerevisiae Ca 2+ channel Cch1pMid1p is essential for tolerance to cold stress and iron toxicity[J]. Febs Letters, 2005, 579(25):5697-5703. [16] Paidhungat M, Garrett S. A homolog of mammalian, voltage-gated calcium channels mediates yeast pheromone-stimulated Ca 2+ uptake and exacerbates the cdc1(Ts)growth defect[J]. Molecular & Cellular Biology, 1997, 17(11):6339-6347. [17] Lew RR, Abbas Z, Anderca MI, et al. Phenotype of a mechanosensitive channel mutant, mid-1, in a filamentous fungus, Neurospora crassa[J]. Eukaryotic Cell, 2008, 7(4):647-655. [18] Cavinder B, Hamam A, Lew RR, et al. Mid1, a mechanosensitive calcium ion channel, affects growth, development, and ascospore discharge in the filamentous fungus Gibberella zeae[J]. Eukaryotic Cell, 2011, 10(6):832-841. [19] Bormann J, Tudzynski P. Deletion of Mid1, a putative stretch-activated calcium channel in Claviceps purpurea, affects vegetative growth, cell wall synthesis and virulence[J]. Microbiology, 2009, 155(Pt 12):3922-3933. [20] de Castro PA, Chiaratto J, Winkelströter LK, et al. The involvement of the Mid1/Cch1/Yvc1 calcium channels in Aspergillus fumigatus virulence[J]. PLoS One, 2014, 9(9):e103957. [21] Palmer CP, Zhou XL, Lin J, et al. A TRP homolog in Saccharomyces cerevisiae forms an intracellular Ca(2+)-permeable channel in the yeast vacuolar membrane[J]. Proceedings of the National Academy of Sciences, 2001, 98(14):7801-7805. [22] Yu Q, Fan W, Qiang Z, et al. A novel role of the vacuolar calcium channel Yvc1 in stress response, morphogenesis and pathogenicity of Candida albicans[J]. International Journal of Medical Microbiology, 2013, 304(3):339-350. [23] Lange M, Weihmann F, Schliebner I, et al. The transient receptor potential(TRP)channel family in Colletotrichum graminicola:a molecular and physiological analysis[J]. PLoS One, 2016, 11 (6):e0158561. [24] Watts HJ, Véry AA, Perera TH, et al. Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans[J]. Microbiology, 1998, 144(Pt 3)(3):689-695. [25] Yuko N, Takeshi K, Kazuo S, et al. Arabidopsis plasma membrane protein crucial for Ca 2+ influx and touch sensing in roots[J]. Proc Natl Acad Sci USA, 2007, 104(104):3639-3644. [26] Valent B, Chumley FG. Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea[J]. Annual Review of Phytopathology, 1991, 29(29):443-467. [27] Nakayashiki H, Hanada S, Nguyen BQ, et al. RNA silencing as a tool for exploring gene function in ascomycete fungi[J]. Fungal Genetics & Biology, 2005, 42(4):275-283. [28] Liedtke W, Friedman JM. Abnormal osmotic regulation in trpv4-/- mice[J]. Proceedings of the National Academy of Sciences, 2003, 100(23):13698-13703. [29] Sung EK, Bertrand C, Abhishek C, et al. The role of Drosophila Piezo in mechanical nociception[J]. Nature, 2012, 483(7388):209-212. [30] Booth IR, Miller S, Müller A, et al. The evolution of bacterial mechanosensitive channels[J]. Cell Calcium, 2014, 57(3):140-150. [31] Jacob S, Foster AJ, Yemelin A, et al. High osmolarity glycerol(HOG)signalling in Magnaporthe oryzae:Identification of MoYPD1, and its role in osmoregulation, fungicide action, and pathogenicity[J]. Fungal Biology, 2015, 119(7):580-594. [32] Dezwaan TM, Carroll AM, Valent B, et al. Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues[J]. Plant Cell, 1999, 11(10):2013-2030. [33] Liu H, Suresh A, Willard FS, et al. Rgs1 regulates multiple Galpha subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism[J]. Embo Journal, 2007, 26(3):690-700. |