生物技术通报 ›› 2017, Vol. 33 ›› Issue (9): 32-47.doi: 10.13560/j.cnki.biotech.bull.1985.2017-0401
王飞,杨海涛,王泽方
收稿日期:
2017-05-25
出版日期:
2017-09-01
发布日期:
2017-09-15
作者简介:
王飞,女,硕士,研究方向:分子生物学和结构生物学;E-mail:wang2010fei46@163.com
基金资助:
WANG Fei,YANG Hai-tao,WANG Ze-fang
Received:
2017-05-25
Published:
2017-09-01
Online:
2017-09-15
摘要: 从荧光蛋白的首次发现至今,其不断丰富的荧光光谱以及日益增多的光化学特性促使其在生物学研究中的地位不断提升。1999年出现的红色荧光蛋白以其卓越的优势在生物学研究中占领了重要地位。主要介绍了从红色荧光蛋白发现至今日趋重要的原因,以及它的显著优势。另外,重讨论了目前几种常见的红色荧光蛋白的特性及其在生物学研究中存在的优势和不足之处,为今后红色荧光蛋白的研究提供一个选择。
王飞,杨海涛,王泽方. 红色荧光蛋白的研究进展[J]. 生物技术通报, 2017, 33(9): 32-47.
WANG Fei,YANG Hai-tao,WANG Ze-fang. Research Progress on Red Fluorescent Protein[J]. Biotechnology Bulletin, 2017, 33(9): 32-47.
[1] Prasher DC, Eckenrode VK, Ward WW, et al. Primary structure of the Aequorea victoria green-fluorescent protein[J] . Gene, 1992, 111(2):229-233. [2] Matz MV, Fradkov AF, Labas YA, et al. Fluorescent proteins from nonbioluminescent Anthozoa species[J] . Nat Biotechnol, 1999, 17(10):969-973. [3] Strack RL, Strongin DE, Bhattacharyya D, et al. A non-cytotoxic DsRed variant for whole-cell labeling[J] . Nature Methods, 2008, 5(11):955-957. [4] Tao W, Evans B, Yao J, et al. Enhanced green fluorescent protein is a nearly ideal long-term expression tracer for hematopoietic stem cells, whereas DsRed-express fluorescent protein is not[J] . Stem Cells, 2007, 25(3):670-678. [5] Yang F, Moss LG, Phillips GN Jr. The molecular structure of green fluorescent protein[J] . Nat Biotechnol, 1996, 14(10):1246-1251. [6] Orm? M, Cubitt AB, Kallio K, et al. Crystal structure of the green fluorescent protein[J] . Science, 1996, 273(5280):1392-1395. [7] Subach OM, Patterson GH, Ting L, et al. A photoswitchable orange-to-far-red fluorescent protein, PSmOrange[J] . Nature Methods, 2011, 8(9):771-777. [8] Ehrenberg M, 罗文新, 夏宁邵. 绿色荧光蛋白——发现、表达和发展[J] . 生物物理学报, 2008(6):422-429. [9] Park N, Song J, Jeong S, et al. Vaccinia-related kinase 3(VRK3)sets the circadian period and amplitude by affecting the subcellular localization of clock proteins in mammalian cells[J] . Biochemical and Biophysical Research Communications, 2017, 487(2):320-326. [10] Zhao D, Xue C, Lin S, et al. Notch signaling pathway regulates angiogenesis via endothelial cell in 3D Co-culture model[J] . Journal of Cellular Physiology, 2017, 232(6):1548-1558. [11] Wachter RM, Watkins JL, Kim H. Mechanistic diversity of red fluorescence acquisition by GFP-like proteins[J] . Biochemistry, 2010, 49(35):7417-7427. [12] Strack RL, Bhattacharyya D, Glick BS, et al. Noncytotoxic orange and red/green derivatives of DsRed-Express2 for whole-cell labeling[J] . BMC Biotechnology, 2009, 9:32. [13] Dash AK, Yende AS, Tyagi RK. Novel Application of red fluorescent protein(DsRed-Express)for the study of functional dynamics of nuclear receptors[J] . Journal of Fluorescence, 2017:1-7. [14] Shaner NC, Lin MZ, Mckeown MR, et al. Improving the photostability of bright monomeric orange and red fluorescent proteins[J] . Nature Methods, 2008, 5(6):545-551. [15] Merzlyak EM, Goedhart J, Shcherbo D, et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime[J] . Nat Methods, 2007, 4(7):555-557. [16] Sakaue-Sawano A, Kurokawa H, Morimura T, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression[J] . Cell, 2008, 132(3):487-498. [17] Tsutsui H, Karasawa S, Okamura Y, et al. Improving membrane voltage measurements using FRET with new fluorescent proteins[J] . Nat Methods, 2008, 5(8):683-685. [18] Bindels DS, Haarbosch L, van Weeren L, et al. mScarlet:a bright monomeric red fluorescent protein for cellular imaging[J] . Nat Methods, 2017, 14(1):53-56. [19] Pandelieva AT, Baran MJ, Calderini GF, et al. Brighter red fluorescent proteins by rational design of triple-decker motif[J] . ACS Chemical Biology, 2016, 11(2):508-517. [20] Fan Y, Ai H. Development of redox-sensitive red fluorescent proteins for imaging redox dynamics in cellular compartments[J] . Analytical and Bioanalytical Chemistry, 2016, 408(11):2901-2911. [21] Shaner NC, Campbell RE, Steinbach PA, et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein[J] . Nat Biotechnol, 2004, 22(12):1567-1572. [22] Wannier TM, Moore MM, Mou Y, et al. Computational design of the β-sheet surface of a red fluorescent protein allows control of protein oligomerization[J] . PLoS One, 2015, 10(6):e130582. [23] Hasegawa J, Ise T, Fujimoto KJ, et al. Excited States of fluorescent proteins, mKO and DsRed:chromophore-protein electrostatic interaction behind the color variations[J] . The Journal of Physical Chemistry B, 2010, 114(8):2971-2979. [24] Bravaya KB, Grigorenko BL, Nemukhin AV, et al. Quantum chemistry behind bioimaging:insights from Ab initio studies of fluorescent proteins and their chromophores[J] . Accounts of Chemical Research, 2012, 45(2):265-275. [25] Ikmi A, Gibson MC. Identification and in vivo characterization of NvFP-7R, a developmentally regulated red fluorescent protein of Nematostella vectensis[J] . PLoS One, 2010, 5(7):e11807. [26] Shcherbo D, Murphy CS, Ermakova GV, et al. Far-red fluorescent tags for protein imaging in living tissues[J] . The Biochemical Journal, 2009, 418(3):567-574. [27] Kredel S, Nienhaus K, Oswald F, et al. Optimized and far-red-emitting variants of fluorescent protein eqFP611[J] . Chemistry & Biology, 2008, 15(3):224-233. [28] Chica RA, Moore MM, Allen BD, et al. Generation of longer emission wavelength red fluorescent proteins using computationally designed libraries[J] . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(47):20257-20262. [29] Shkrob MA, Yanushevich YG, Chudakov DM, et al. Far-red fluorescent proteins evolved from a blue chromoprotein from Actinia equina[J] . Biochemical Journal, 2005, 392(Pt 3):649-654. [30] Wannier TM, Mayo SL. The structure of a far-red fluorescent protein, AQ143, shows evidence in support of reported red-shifting chromophore interactions[J] . Protein Science:A Publication of the Protein Society, 2014, 23(8):1148-1153. [31] Mcisaac RS, Engqvist MKM, Wannier T, et al. Directed evolution of a far-red fluorescent rhodopsin[J] . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(36):13034-13039. [32] Konold PE, Yoon E, Lee J, et al. Fluorescence from multiple chromophore hydrogen-bonding states in the far-red protein TagRFP675[J] . The Journal of Physical Chemistry Letters, 2016, 7(15):3046-3051. [33] Hense A, Prunsche B, Gao P, et al. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging[J] . Scientific Reports, 2015, 5:18006. [34] Yu D, Dong Z, Gustafson WC, et al. Rational design of a monomeric and photostable far‐red fluorescent protein for fluorescence imaging in vivo[J] . Protein Science:A Publication of the Protein Society, 2015, 25(2):308-315. [35] Bajar BT, Lam AJ, Badiee RK, et al. Fluorescent indicators for simultaneous reporting of all four cell cycle phases[J] . Nat Methods, 2016, 13(12):993-996. [36] Li Z, Zhang Z, Bi L, et al. Mutagenesis of mNeptune red-shifts emission spectrum to 681-685 nm[J] . PLoS One, 2016, 11(4):e148749. [37] Ren H, Yang B, Ma C, et al. Cysteine sulfoxidation increases the photostability of red fluorescent proteins[J] . ACS Chemical Biology, 2016, 11(10):2679-2684. [38] Shcherbo D, Merzlyak EM, Chepurnykh TV, et al. Bright far-red fluorescent protein for whole-body imaging[J] . Nat Methods, 2007, 4(9):741-746. [39] Shcherbo D, Shemiakina II, Ryabova AV, et al. Near-infrared fluorescent proteins[J] . Nature Methods, 2010, 7(10):827-829. [40] Armengol P, Gelabert R, Moreno M, et al. Chromophore interactions leading to different absorption spectra in mNeptune1 and mCardinal red fluorescent proteins[J] . Physical Chemistry Chemical Physics, 2016, 18(25):16964-16976. [41] Shu X, Royant A, Lin MZ, et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome[J] . Science(New York, N. Y. ), 2009, 324(5928):804-807. [42] Filonov GS, Piatkevich KD, Ting L, et al. Bright and stable near infra-red fluorescent protein for in vivo imaging[J] . Nature Biotechnology, 2011, 29(8):757-761. [43] Lin L, Wang B, Chen J, et al. mPlum-IFP 1. 4 fluorescent fusion protein may display F?rster resonance energy transfer associated properties that can be used for near-infrared based reporter gene imaging[J] . Journal of Biomedical Optics, 2013, 18(12):126013. [44] Bajar BT, Wang ES, Zhang S, et al. A guide to fluorescent protein FRET pairs[J] . Sensors(Basel, Switzerland), 2016, 16(9):1488. [45] Moore MM, Oteng-Pabi SK, Pandelieva AT, et al. Recovery of red fluorescent protein chromophore maturation deficiency through rational design[J] . PLoS One, 2012, 7(12):e52463. [46] Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling[J] . Molecular Cell, 2007, 26(1):1-14. [47] Kumagai A, Ando R, Miyatake H, et al. A bilirubin-inducible fluorescent protein from eel muscle[J] . Cell, 2013, 153(7):1602-1611. [48] Rodriguez EA, Tran GN, Gross LA, et al. A far-red fluorescent protein evolved from a cyanobacterial phycobiliprotein[J] . Nature Methods, 2016, 13(9):763-769. [49] Ai H, Hazelwood KL, Davidson MW, et al. Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors[J] . 2008, 5(5):401-403. [50] Shcherbakova DM, Hink MA, Joosen L, et al. An orange fluorescent protein with a large Stokes shift for single-excitation multicolor FCCS and FRET imaging[J] . Journal of the American Chemical Society, 2012, 134(18):7913-7923. [51] Kogure T, Karasawa S, Araki T, et al. A fluorescent variant of a protein from the stony coral Montipora facilitates dual-color single-laser fluorescence cross-correlation spectroscopy[J] . Nat Biotechnol, 2006, 24(5):577-581. [52] Piatkevich KD, Hulit J, Subach OM, et al. Monomeric red fluorescent proteins with a large Stokes shift[J] . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(12):5369-5374. [53] Kennis JTM, van Stokkum IHM, Peterson DS, et al. Ultrafast proton shuttling in psammocora cyan fluorescent protein[J] . The Journal of Physical Chemistry B, 2013, 117(38):11134-11143. [54] Fron E, De Keersmaecker H, Rocha S, et al. Mechanism behind the apparent large stokes shift in lssmorange investigated by time-resolved spectroscopy[J] . The Journal of Physical Chemistry B, 2015, 119(47):14880-14891. [55] Piatkevich KD, Malashkevich VN, Almo SC, et al. Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large Stokes shift[J] . Journal of the American Chemical Society, 2010, 132(31):10762-10770. [56] Guan Y, Meurer M, Raghavan S, et al. Live-cell multiphoton fluorescence correlation spectroscopy with an improved large Stokes shift fluorescent protein[J] . Molecular Biology of the Cell, 2014, 26(11):2054-2066. [57] Piatkevich KD, English BP, Malashkevich VN, et al. Photoswitchable red fluorescent protein with a large Stokes shift[J] . Chemistry & Biology, 2014, 21(10):1402-1414. [58] Yang J, Wang L, Yang F, et al. mBeRFP, an improved large stokes shift red fluorescent protein[J] . PLoS One, 2013, 8(6):e64849. [59] Pletnev S, Shcherbakova DM, Subach OM, et al. Orange fluorescent proteins:structural studies of LSSmOrange, PSmOrange and PSmOrange2[J] . PLoS One, 2014, 9(6):e99136. [60] Bacia K, Kim SA, Schwille P. Fluorescence cross-correlation spectroscopy in living cells[J] . Nat Methods, 2006, 3(2):83-89. [61] Lindenburg LH, Malisauskas M, Sips T, et al. Quantifying stickiness:thermodynamic characterization of intramolecular domain interactions to guide the design of f?rster resonance energy transfer sensors[J] . Biochemistry, 2014, 53(40):6370-6381. [62] Laviv T, Kim BB, Chu J, et al. Simultaneous dual-color fluorescence lifetime imaging with novel red-shifted fluorescent proteins[J] . 2016, 13(12):989-992. [63] Zhu X, Zhang L, Kao Y, et al. A tunable fluorescent timer method for imaging spatial-temporal protein dynamics using light-driven photoconvertible protein[J] . Journal of Biophotonics, 2015, 8(3):226-232. [64] Takamura A, Hattori M, Yoshimura H, et al. Simultaneous time-lamination imaging of protein association using a split fluorescent timer protein[J] . Analytical Chemistry, 2015, 87(6):3366-3372. [65] Tsuboi T, Kitaguchi T, Karasawa S, et al. Age-dependent preferential dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein[J] . Molecular Biology of the Cell, 2009, 21(1):87-94. [66] Khmelinskii A, Keller PJ, Bartosik A, et al. Tandem fluorescent protein timers for in vivo analysis of protein dynamics[J] . Nat Biotechnol, 2012, 30(7):708-714. [67] Barry JD, Donà E, Gilmour D, et al. TimerQuant:a modelling approach to tandem fluorescent timer design and data interpretation for measuring protein turnover in embryos[J] . Development(Cambridge, England), 2015, 143(1):174-179. [68] Khmelinskii A, Knop M. Analysis of protein dynamics with tandem fluorescent protein timers[M] . Exocytosis and Endocytosis, Ivanov AI, New York:Springer New York, 2014, 195-210. [69] Dona E, Barry JD, Valentin G, et al. Directional tissue migration through a self-generated chemokine gradient[J] . Nature, 2013, 503(7475):285-289. [70] Khmelinskii A, Meurer M, Ho C, et al. Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers[J] . Molecular Biology of the Cell, 2015, 27(2):360-370. [71] Subach FV, Patterson GH, Renz M, et al. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells[J] . Journal of the American Chemical Society, 2010, 132(18):6481-6491. [72] Chudakov DM, Lukyanov S, Lukyanov KA. Tracking intracellular protein movements using photoswitchable fluorescent proteins PS-CFP2 and Dendra2[J] . 2007, 2(8):2024-2032. [73] Zhang M, Chang H, Zhang Y, et al. Rational design of true monomeric and bright photoactivatable fluorescent proteins[J] . 2012, 9(7):727-729. [74] Hoi H, Shaner NC, Davidson MW, et al. A monomeric photoconvertible fluorescent protein for imaging of dynamic protein localization[J] . Journal of Molecular Biology, 2010, 401(5):776-791. [75] Subach OM, Patterson GH, Ting L, et al. A photoswitchable orange-to-far-red fluorescent protein, PSmOrange[J] . Nature Methods, 2011, 8(9):771-777. [76] Piatkevich KD, Subach FV, Verkhusha VV. Far-red light photoactivatable near-infrared fluorescent proteins engineered from a bacterial phytochrome[J] . Nature Communications, 2013, 4:2153. [77] Griswold SL, Sajja KC, Jang C, et al. Generation and characterization of iUBC-KikGR photoconvertible transgenic mice for live time lapse imaging during development[J] . Genesis, 2011, 49(7):591-598. [78] Nickerson A, Huang T, Lin L, et al. Photoactivated localization microscopy with bimolecular fluorescence complementation(BiFC-PALM)[J] . J Vis Exp, 2015(106):e53154. [79] Shroff H, White H, Betzig E. Photoactivated localization microscopy(PALM)of adhesion complexes[J] . Current Protocols in Cell Biology, 2013, Chapter 4:t4.t21. [80] Brown TA, Tkachuk AN, Shtengel G, et al. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction[J] . Molecular and Cellular Biology, 2011, 31(24):4994-5010. [81] Wang S, Moffitt JR, Dempsey GT, et al. Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging[J] . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(23):8452-8457. [82] Mckinney SA, Murphy CS, Hazelwood KL, et al. A bright and photostable photoconvertible fluorescent protein for fusion tags[J] . Nature Methods, 2009, 6(2):131-133. [83] Fuchs J, Bohme S, Oswald F, et al. A photoactivatable marker protein for pulse-chase imaging with superresolution[J] . 2010, 7(8):627-630. [84] Subach OM, Entenberg D, Condeelis JS, et al. A FRET-facilitated photoswitching using an orange fluorescent protein with the fast photoconversion kinetics[J] . Journal of the American Chemical Society, 2012, 134(36):14789-14799. [85] Subach FV, Subach OM, Gundorov IS, et al. Monomeric fluorescent timers that change color from blue to red report on cellular trafficking[J] . Nature Chemical Biology, 2009, 5(2):118-126. [86] Tsuboi T, Kitaguchi T, Karasawa S, et al. Age-dependent preferential dense-core vesicle exocytosis in neuroendocrine cells revealed by newly developed monomeric fluorescent timer protein[J] . Molecular Biology of the Cell, 2009, 21(1):87-94. [87] Griswold SL, Sajja KC, Jang C, et al. Generation and characterization of iUBC-KikGR photoconvertible transgenic mice for live time lapse imaging during development[J] . Genesis, 2011, 49(7):591-598. [88] Jensen NA, Danzl JG, Willig KI, et al. Coordinate-targeted and coordinate-stochastic super-resolution microscopy with the reversibly switchable fluorescent protein dreiklang[J] . Chemphyschem, 2014, 15(4):756-762. [89] Duwé S, Moeyaert B, Dedecker P. Diffraction-unlimited fluorescence microscopy of living biological samples using pcSOFI[J] . Curr Protoc Chem Biol, 2015, 7:27-41. [90] Wang S, Chen X, Chang L, et al. GMars-Q enables long-term live-cell parallelized reversible saturable optical fluorescence transitions nanoscopy[J] . ACS Nano, 2016, 10(10):9136-9144. [91] Lavoie-Cardinal F, Jensen NA, Westphal V, et al. Two-color RESOLFT nanoscopy with green and red fluorescent photochromic proteins[J] . Chemphyschem, 2014, 15(4):655-663. [92] Zhang X, Zhang M, Li D, et al. Highly photostable, reversibly photoswitchable fluorescent protein with high contrast ratio for live-cell superresolution microscopy[J] . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(37):10364-10369. [93] El Khatib M, Martins A, Bourgeois D, et al. Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm[J] . Scientific Reports, 2016, 6:18459. [94] Smyrnova D, Zinovjev K, Tu?ón I, et al. Thermal isomerization mechanism in dronpa and its mutants[J] . The Journal of Physical Chemistry B, 2016, 120(50):12820-12825. [95] Zhang X, Chen X, Zeng Z, et al. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging(SOFI)[J] . ACS Nano, 2015, 9(3):2659-2667. [96] Morozov D, Groenhof G. Hydrogen bond fluctuations control photochromism in a reversibly photo-switchable fluorescent protein[J] . Angewandte Chemie International Edition, 2016, 55(2):576-578. [97] Subach OM, Malashkevich VN, Zencheck WD, et al. Structural characterization of acylimine-containing blue and red chromophores in mTagBFP and TagRFP fluorescent proteins[J] . Chemistry & Biology, 2010, 17(4):333-341. [98] Armengol P, Gelabert R, Moreno M, et al. New insights into the structure-spectrum relationship in S65T/H148D and E222Q/H148D green fluorescent protein mutants:a theoretical assessment[J] . Organic & Biomolecular Chemistry, 2014, 12(48):9845-9852. [99] Pletnev S, Subach FV, Dauter Z, et al. Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores[J] . Journal of the American Chemical Society, 2010, 132(7):2243-2253. [100] Henderson JN, Osborn MF, Koon N, et al. Excited state proton transfer in the red fluorescent protein mKeima[J] . Journal of the American Chemical Society, 2009, 131(37):13212-13213. [101] Shu X, Wang L, Colip L, et al. Unique interactions between the chromophore and glutamate 16 lead to far-red emission in a red fluorescent protein[J] . Protein Science:A Publication of the Protein Society, 2009, 18(2):460-466. [102] Takemoto K, Matsuda T, Sakai N, et al. SuperNova, a monomeric photosensitizing fluorescent protein for chromophore-assisted light inactivation[J] . Scientific Reports, 2013, 3:2629. [103] Pletneva NV, Pletnev VZ, Sarkisyan KS, et al. Crystal structure of phototoxic orange fluorescent proteins with a tryptophan-based chromophore[J] . PLoS One, 2015, 10(12):e145740. [104] Subach OM, Cranfill PJ, Davidson MW, et al. An enhanced monomeric blue fluorescent protein with the high chemical stability of the chromophore[J] . PLoS One, 2011, 6(12):e28674. [105] Tsien RY. Rosy dawn for fluorescent proteins[J] . Nat Biotechnol, 1999, 17(10):956-957. [106] Bindels DS, Haarbosch L, van Weeren L, et al. mScarlet:a bright monomeric red fluorescent protein for cellular imaging[J] . 2017, 14(1):53-56. |
[1] | 梁俊婷, 李鹿之, 陈少鹏, 焦浈. 红色荧光蛋白mCherry中插入外源短肽位点的研究[J]. 生物技术通报, 2013, 0(5): 144-148. |
[2] | 梁伟;肖红;高笑宇;杜晓媛;汪慧;郭旭东;刘东军;. 小鼠KGF基因毛囊特异性表达载体的构建及mESC脂质体悬浮转染条件的优化[J]. , 2011, 0(11): 107-117. |
[3] | 汪开. 新加坡育成二色转基因蓑鲉[J]. , 2003, 0(04): 51-51. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||