[1] 孙瀚昌. 鱼类基因组研究概述[J] . 北京水产, 2015(1):41-43. [2] Weissenbach J. The rise of genomics[J] . Comptes Rendus Biologies, 2016, 339(7-8):231-239. [3] Brown LR. Who will feed china?:Wake-up call for a small Planet[M] . New York:W. W. Norton & Company, 1995:1-163. [4] Anderson S. Shotgun DNA sequencing using cloned DNase I-generated fragments[J] . Nucleic Acids Research, 1981, 9:3015-3027. [5] Lander ES, Linton LM, Birren B, et al. Intital sequencing and analysis of the human genome[J] . Nature, 2001, 409:860-921. [6] Fleischmann RD, Adams MD, White O, et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. [J] . Science, 1995, 269:496-512. [7] Adams MD, Celniker SE, Holt RA, et al. The genome sequence of Drosophila melanogaster[J] . Science, 2000, 287:2185-2195. [8] Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome[J] . Science, 2001, 291:1304-1351. [9] Aparicio S, Chapman J, Stupka E, et al. Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes[J] . Science, 2002, 297:1301-1310. [10] Sanger F, Air GM, Barrell BG, et al. Nucleotide sequence of bacteriophage phi X 174 DNA[J] . Nature, 1977, 265:687-695. [11] Seo TS, Bai XP, Kim DH, et al. Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides[J] . PNAS, 2005, 102(17):5926-5931. [12] Wheeler DA, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing[J] . Nature, 2008, 452:872-876. [13] Bentley DR, Balasubbramanian S, Swerdlow HP, et al. Accurate whole human genome sequencing using reversible terminator chemistry[J] . Nature, 2008, 456:53-59. [14] McKernan KJ, Peckham HE, Costa GL, et al. Sequence and structural variation in a human genome uncovered by short-read, massively parallel ligation sequencing using two-base encoding[J] . Genome Research, 2009, 19:1527-1541. [15] Schuster SC. Next-generation sequencing transforms today’s biology[J] . Nature Methods, 2008, 5:16-18. [16] Metzker ML. Sequencing technologies-the next generation[J] . Nature Reviews Genetics, 2010, 11:31-46. [17] Liu LD, Li YH, Li SL, et al. Comparison of next-generation sequencing systems[J] . Journal of Biomedicine and Biotechno-logy, 2012, doi:1155/2012/251364. [18] Rothberg JM, Hinz W, Rearick TM, et al. An integrated semiconductor device enabling non-optical genome sequencing[J] . Nature, 2011, 475:348-352. [19] Liao YC, Lin SH, Lin HH. Completing bacterial genome assemblies:strategy and performance comparisons[J] . Scientific Reports, 2015, 5:8747. [20] Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome[J] . Nature, 2013, 496:498-503. [21] Kettleborough RNW, Busch-Nentwich EM, Harvey SA, et al. A systematic genome-wide analysis of zebrafish protein-coding gene function[J] . Nature, 2013, 496:494-497. [22] Jaillon O, Aury JM, Brunet F, et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype[J] . Nature, 2004, 431:946-957. [23] Kasahara M, Naruse K, Sasaki S, et al. The medaka draft genome and insights into vertebrate genome evolution[J] . Nature, 2007, 447:714-719. [24] Star B, Nederbragt AJ, Jentoft S, et al. The genome sequence of Atlantic cod reveals a unique immune system[J] . Nature, 2011, 477:207-210. [25] Jones FC, Grabherr MG, Chan YF, et al. The genomic basis of adaptive evolution in threespine sticklebacks[J] . Nature, 2012, 484:55-61. [26] Davidson WS, Koop BF, Jones SJ, et al. Sequencing the genome of the Atlantic salmon(Salmo salar)[J] . Genome Biology, 2010, 11(9):403. [27] Henkel CV, Dirks RP, de Wijze DLD, et al. First draft genome sequence of the Japanese eel, Anguilla japonica[J] . Gene, 2012, 511(2):195-201. [28] Schartl M, Walter RB, Shen Y, et al. The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits[J] . Nature Genetics, 2013, 45:567-572. [29] Amemiya CT, Alf?ldi J, Lee AP, et al. The African coelacanth genome provides insights into tetrapod evolution[J] . Nature, 2013, 496:311-316. [30] Nakamura Y, Mori K, Saitoh K, et al. Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna[J] . Proceedings of the National Academy of Sciences, 2013, 110(27):11061-11066. [31] Berthelot C, Brunet F, Chalopin D, et al. The rainbow trout genome provides novel insights into evolution after whole-genome dulication in vertebrates[J] . Nature comunications, 2014, 5:3657. [32] Shin SC, Ahn DH, Kim SJ, et al. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment[J] . Genome Biology, 2014, 15(9):468. [33] Brawand D, Wagner CE, Li YI, et al. The genome substrate for adaptive radiation in African cichlid fish[J] . Nature, 2014, 513:375-381. [34] Tine M, Kuhl H, Gagnaire PA, et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation[J] . Nature Comunications, 2014, 5:5770. [35] Rondeau EB, Minkley DR, Leong JS, et al. The genome and linkage map of the northern pike(Esox lucius):conserved synteny revealed between the salmonid sister group and the Neoteleostei[J] . PLoS One, 2014, 9(7):e102089. [36] Gallant JR, Traeger LL, Volkening JD, et al. Nonhuman genetics. Genomic basis for the convergent evolution of electric organs[J] . Science, 2014, 344(6191):1522-1525. [37] Mcgaugh SE, Gross JB, Aken B, et al. The cavefish genome reveals candidate genes for eye loss[J] . Nature Communications, 2014, 5:5307. [38] Liu ZJ, Liu SK, Yao J, et al. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts[J] . Nature Comunications, 2016, 7:11757. [39] Domingos JA, Zenger KR, Jerry DR. Whole-genome shotgun sequence assembly enables rapid gene characterization in the tropical fish barramundi, Lates calcarifer[J] . Animal Genetics, 2015, 46(4):468-469. [40] Arthofer W, Bertini L, Caruso C, et al. Genomic resources notes accepted 1 February 2015-31 March 2015[J] . Molecular Ecology Resources, 2015, 15(4):1014-1015. [41] Fraser BA, Künstner A, Reznick DN, et al. Population genomics of natural and experimental populations of guppies(Poecilia reticulata)[J] . Molecular Ecology, 2015, 24(2):389-408. [42] Harel I, Benayoun BA, Machado B, et al. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate[J] . Cell, 2015, 160(5):1013-1026. [43] Barrio M, Lamichhaney S, Fan GY, et al. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing[J] . Elife, 2016, 5:e12081. [44] Lien S, Koop BF, Sandve SR, et al. The Atlantic salmon genome provides insights into rediploidization[J] . Nature, 2016, 533:200-205. [45] Xu P, Zhang XF, Wang XM, et al. Genome sequence and genetic diversity of the common carp, Cyprinus carpio[J] . Nature Genetics, 2014, 46:1212-1249. [46] Chen SL, Zhang GJ, Shao CW, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle[J] . Nature Genetics, 2014, 46:253-260. [47] You XX, Bian C, Zan QJ, et al. Mudskipper genomes provide insights into the terrestrial adaptation of amphibious fishes[J] . Nature Comunications, 2014, 5:5594. [48] Wu CW, Zhang D, Kan MY, et al. The draft genome of the large yellow croaker reveals well-developed innate immunity[J] . Nature Comunications, 2014, 5:5227. [49] Ao JQ, Mu YN, Xiang LX, et al. Genome sequencing of the perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation[J] . PLoS Genetics, 2015, 11(4):e1005118. [50] Wang YP, Lu Y, Zhang Y, et al. The draft genome of the grass carp(Ctenopharyngodon idellus)provides insights into its evolution and vegetarian adaptation[J] . Nature Genetics, 2015, 47:625-631. [51] Yang JX, Chen XL, Bai J, et al. The Sinocyclocheilus cavefish genome provides insights into cave adaptation[J] . BMC Biology, 2016, 14:1. [52] Bian C, Hu Y, Ravi V, et al. The Asian arowana(Scleropages formosus)genome provides new insights into the evolution of an early lineage of teleosts[J] . Scientific Reports, 2016, 6:24501. [53] Chen XH, Zhong LQ, Bian C, et al. High-quality genome assembly of channel catfish, Ictalurus punctatus[J] . Gigascience, 2016, 5(1):39. [54] Liu K, Xu DP, Li J, et al. Whole genome sequencing of Chinese clearhead icefish, Protosalanx hyalocranius[J] . Gigascience, 2017, 6(4):1-6. [55] Shao CW, Bao BL, Xie ZY, et al. The genome and transcriptome of Japanese flounder provide insights into flatfish asymmetry[J] . Nature Genetics, 2017, 49:119-124. |