[1] Jones JD, Dang JL.The plant immune system[J]. Nature, 2006, 444:323-329. [2] Sonah H, Deshmukh RK, Bélanger RR.Computational prediction of effector proteins in fungi:opportunities and challenges[J]. Front Plant Sci, 2016, 7:126-132. [3] Guttman DS, McHardy AC, Schulze-Lefert P. Microbial genome- enabled insights into plant-micro organism interactions[J]. Nat Rev, 2014, 15:797-813. [4] Selin C, Kievit TR, Belmonte MF, et al.Elucidating the role of effectors in plant-fungal interactions:progress and challenges[J]. Front Microbiol, 2016, 7:600-610. [5] Win J, Chaparro-Garcia A, Belhaj K, et al.Effector biology of plant associated organisms:concepts and perspectives[J]. Cold Spring Harb Symp Quant Biol, 2012, 77:235-247. [6] 李振岐, 曾士迈. 中国小麦锈病[M]. 北京:中国农业出版社, 2002. [7] 康振生, 王晓杰, 赵杰, 等. 小麦条锈菌致病性及其变异研究进展[J]. 中国农业科学, 2015, 17:3439-3453. [8] Thach T, Ali S, de Vallavieille-Pope C, et al. Worldwide population structure of the wheat rust fungus Puccinia striiformis in the past[J]. Fungal Genet Biol, 2016, 87:1-8. [9] Schwessinger B.Fundamental wheat stripe rust research in the 21st century[J]. New Phytol, 2017, 213:1625-1631. [10] Derevnina L, Richard WM.Wheat rusts never sleep but neither do sequencers:will pathogenomics transform the way plant diseases are managed?[J]. Genome Biol, 2015, 16:44. [11] Hesham AYG, Bart PHJT, Michael FS.The age of effectors:genome-based discovery and applications[J]. Phytopathology, 2016, 106:1206-1212. [12] Cantu D, Govindarajulu M, Kozik A, et al.Next generation sequencing provides rapid access to the genome of Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust[J]. PLoS One, 2011, 6:e24230. [13] Cantu D, Segovia V, MacLean D. Genome analyses of the wheat yellow(stripe)rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors[J]. BMC Genomics, 2013, 14:270. [14] Zheng W, Huang L, Huang J, et al.High genome heterozygosity and endemic genetic recombination in the wheat stripe rust fungus[J]. Nat Commun, 2013, 4:2673. [15] Duplessis S, Cuomo CA, Lin YC, et al.Obligate biotrophy features unraveled by the genomic analysis of rust fungi[J]. Proc Natl Acad Sci USA, 2011, 108:9166-9171. [16] Christina AC, Guus B, Hala BK, et al.Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci[J]. G3(Bethesda), 2017, 7:361-376. [17] Sun F, Kale SD, Azurmendi HF, et al.Structural basis for interactions of the Phytophthora sojae RxLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry[J]. Mol Plant Microbe Interact, 2013, 26:330-344. [18] Ye W, Wang Y, Wang Y.Bioinformatics analysis reveals abundant short alpha-helices as a common structural feature of oomycete RxLR effector proteins[J]. PLoS One, 2015, 10:e0135240. [19] Sonah H, Deshmukh RK, Bélanger RR.Computational prediction of effector proteins in fungi:opportunities and challenges[J]. Front Plant Sci, 2016, 7:126-132. [20] Tanaka S, Djamei A, Presti LL, et al.Experimental approaches to investigate effector translocation into host cells in the Ustilago maydis/maize patho system[J]. Eur J Cell Biol, 2015, 94:349-358. [21] Petre B, Joly DL, Duplessis S.Effector proteins of rust fungi[J]. Front Plant Sci, 2014, 5:416. [22] De Wit PJ, Testa AC, Oliver RP.Fungal plant pathogenesis mediated by effectors[J]. Microbiol Spectrum, 2016, 4(6):18-26. [23] Hogenhout SA, van der Hoorn RA, Terauchi R, et al. Emerging concepts in effector biology of plant-associated organisms[J]. Mol Plant Microbe Interact, 2009, 22:115-122. [24] Kamoun S.A catalogue of the effector secretome of plant pathogenic oomycetes[J]. Annu Rev Phytopathol, 2006, 44:41-60. [25] Spanu PD, Abbott JC, Amselem J, et al.Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism[J]. Science, 2010, 330:1543-1546. [26] Saunders DG, Win J, Cano LM, et al.Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi[J]. PLoS One, 2012, 7:e29847. [27] Nemri A, Saunders DG, Anderson C, et al.The genome sequence and effector complement of the flax rust pathogen Melamp soralini[J]. Front Plant Sci, 2014, 5:98. [28] Petre B, Kamoun S.How do filamentous pathogens deliver effector proteins into Plant Cells?[J]. PLoS Biol, 2014, 12:e1001801. [29] Gout L, Fudal I, Kuhn ML, et al.Lost in the middle of nowhere:the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans[J]. Mol Microbiol, 2006, 60:67-80. [30] Prateek C, Bulbul, David LJ, et al.Effector biology during biotrophic invasion of Plant Cells[J]. Virulence, 2014, 5:703-709. [31] Giraldo MC, Valent B.Filamentous plant pathogen effectors in action[J]. Nat Rev Microbiol, 2013, 11:800-814. [32] Caillaud MC, Piquerez SJ, Fabro G, et al.Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility[J]. Plant J, 2012, 69:252-265. [33] Godfrey D, Böhlenius H, Pedersen C, et al.Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif[J]. BMC Genomics, 2010, 11:317-322. [34] Oliveira-Garcia E, Valent B.How eukaryotic filamentous pathogens evade plant recognition[J]. Curr Opin Microbiol, 2015, 26:92-101 [35] Mueller AN, Ziemann S, Treitschke S, et al.Compatibility in the Ustilago maydis maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2[J]. PLoS Pathog, 2013, 9:e1003177. [36] Garnica DP, Nemri A, Upadhyaya NM, et al.The ins and outs of rust haustoria[J]. PLoS Pathog, 2014, 10:e1004329. [37] Redkar A, Hoser R, Schilling L, et al.A secreted effector protein of Ustilago maydis guides maize leaf cells to form tumors[J]. Plant Cell, 2015, 27:1332-1351. [38] Hemetsberger C, Mueller AN, Matei A, et al.The fungal core effector Pep1 is conserved across smuts of dicots and monocots[J]. New Phytol, 2015, 206:1116-1126. [39] Doehlemann G, van der Linde K, Assmann D, et al. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of Plant Cells[J]. PLoS Pathog, 2009, 5:e1000290. [40] Djamei A, Schipper K, Rabe F, et al.Metabolic priming by a secreted fungal effector[J]. Nature, 2011, 478:395-398. [41] Gueddari NE, Rauchhaus U, Moerschbacher BM, et al.Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi[J]. New Phytol, 2002, 156:103-112. [42] Ellis JG, Dodds PN, Lawrence GJ.Flax rust resistance gene specificity is based on direct resistance-avirulence protein interactions[J]. Annu Rev Phytopathol, 2007, 45:289-306. [43] Kemen E, Kemen AC, Rafiqi M, et al.Identification of a protein from rust fungi transferred from haustoria into infected Plant Cells[J]. Mol Plant Microbe Interact, 2005, 18:1130-1139. [44] Upadhyaya NM, Mago R, Staskawicz BJ, et al.A bacterial type III secretion assay for delivery of fungal effector proteins into wheat[J]. Mol Plant Microbe Interact, 2014, 27:255-264. [45] Ramachandran S, Yin C, Kud J, et al.Effectors from wheat rust fungi suppress multiple plant defense responses[J]. Phytopathology, 2017, 107:75-83. [46] Petre B, Saunders DGO, Sklenar J, et al.Heterologous expression Screens in Nicotiana benthamiana identify a candidate effector of the wheat yellow rust pathogen that associates with processing bodies[J]. PLoS One, 2016, 11:e0149035. [47] Liu CH, Pedersen C, Schultz-Larsen T, et al.The stripe rust fungal effector PEC6 suppresses pattern-triggered immunity in a host species-independent manner and interacts with adenosine kinases[J]. New Phytol, 2016, DOI:10. 1111/nph. 14034. [48] Yin C, Chen X, Wang X, et al.Generation and analysis of expression sequence tags from haustoria of the wheat stripe rust fungus Puccinia striiformis f. sp. tritici[J]. BMC Genomics, 2009, 10:626-633. [49] Cheng YL, Wu K, Yao JN, et al.PSTha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity[J]. Environ Microbiol, 2017, 19:1717-1729. [50] Wang XD, Yang BJ, Li K, et al.A conserved Puccinia striiformis protein interacts with wheat NPR1 and reduces induction of pathogenesis-related genes in response to pathogens[J]. Mol Plant Microbe Interact, 2016, 29:977-989. [51] Wirthmueller L, Maqbool A, Banfield MJ.On the front line:structural insights into plant-pathogen interactions[J]. Nat Rev Microbiol, 2013, 11:761-776. [52] Qutob D, Tedman-Jones J, Dong S, et al.Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a[J]. PLoS One, 2009, 4:e5066. [53] Ali S, Laurie JD, Linning R, et al.An immunity-triggering effector from the Barley smut fungus Ustilago hordei resides in an Ustilaginaceae-specific cluster bearing signs of transposable element-assisted evolution[J]. PLoS Pathog, 2014, 10:e1004223. [54] Rep M, van der Does HC, Meijer M, et al. A small, cysteine-rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I-3-mediated resistance in tomato[J]. Mol Microbiol, 2004, 53:1373-1383. [55] Na R, Gijzen M.Escaping host immunity:new tricks for plant pathogens[J]. PLoS Pathog, 2016, 12:e1005631. [56] Shan WX, Cao M, Dan LU, et al.The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b[J]. Mol Plant Microbe Interact, 2004, 17:394-403. |