[1] Chandran SS, Kealey JT, Reeves CD.Microbial production of isoprenoids[J]. Process Biochemistry, 2011, 46:1703-1710. [2] Wright CW.Traditional antimalarials and the development of novel antimalarial drugs[J]. Ethnopharmacol, 2005, 100:67-71. [3] Jennewein S, Croteau R.Taxol:biosynthesis, molecular genetics, and biotechnological applications[J]. Appl Microbiol Biotechnol, 2001, 57:13-19. [4] Rao LG, Mackinnon ES, Josse RG, et al.Lycopene consumption decreases oxidative stress and bone resorption markers in postmenopausal women[J]. Osteoporos Int, 2007, 18:109-115. [5] Zhao J, Bao X, Li C, et al.Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol, 2016, 100:4561-4571. [6] de Sousa DP, Goncalves JC, Quintans-Junior L, et al. Study of anticonvulsant effect of citronellol, a monoterpene alcohol, in rodents[J]. Neurosci Lett, 2006, 401:231-235. [7] Brennan TC, Turner CD, Kromer JO, et al.Alleviating monoterpene toxicity using a two-phase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae[J]. Biotechnol Bioeng, 2012, 109:2513-2522. [8] Sarria S, Wong B, Garcia Martin H, et al.Microbial synthesis of pinene[J]. ACS Synth Biol, 2014, 3:466-475. [9] Chaykin S, Law J, Phillips AH, et al.Phosphorylated intermediates in the synthesis of squalene[J]. Proc Natl Acad Sci USA, 1958, 44:998-1004. [10] Basson ME, Thorsness M, Rine J.Saccharomyces cerevisiae contains two functional genes encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase[J]. Proc Natl Acad Sci USA, 1986, 83:5563-5567. [11] Liang PH, Ko TP, Wang AH.Structure, mechanism and function of prenyltransferases[J]. Eur J Biochem, 2002, 269:3339-3354. [12] Westfall PJ, Pitera DJ, Lenihan JR, et al.Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proc Natl Acad Sci USA, 2012, 109:E111-118. [13] Zhao J, Li Q, Sun T, et al.Engineering central metabolic modules of Escherichia coli for improving beta-carotene production[J]. Metab Eng, 2013, 17:42-50. [14] Fischer MJ, Meyer S, Claudel P, et al.Metabolic engineering of monoterpene synthesis in yeast[J]. Biotechnol Bioeng, 2011, 108:1883-1892. [15] Herrero O, Ramon D, Orejas M.Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine[J]. Metab Eng, 2008, 10:78-86. [16] Oswald M, Fischer M, Dirninger N, et al.Monoterpenoid biosynthesis in Saccharomyces cerevisiae[J]. FEMS Yeast Res, 2007, 7:413-421. [17] Jongedijk E, Cankar K, Ranzijn J, et al.Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae[J]. Yeast, 2015, 32:159-171. [18] Ignea C, Cvetkovic I, Loupassaki S, et al.Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids[J]. Microb Cell Fact, 2011, 10:4. [19] Jiang GZ, Yao MD, Wang Y, et al.Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae[J]. Metab Eng, 2017, 41:57-66. [20] Turner G, Gershenzon J, Nielson EE, et al.Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells[J]. Plant Physiol, 1999, 120:879-886. [21] Bohlmann J, Meyer-Gauen G, Croteau R.Plant terpenoid synthases:molecular biology and phylogenetic analysis[J]. Proc Natl Acad Sci USA, 1998, 95:4126-4133. [22] Donald KA, Hampton RY, Fritz IB.Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synthesis in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 1997, 63:3341-3344. [23] Keasling JD.Synthetic biology and the development of tools for metabolic engineering[J]. Metab Eng, 2012, 14:189-195. [24] Liu J, Zhang W, Du G, et al.Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae[J]. Biotechnol, 2013, 168:446-451. [25] Rico J, Pardo E, Orejas M.Enhanced production of a plant monoterpene by overexpression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase catalytic domain in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2010, 76:6449-6454. [26] Ignea C, Pontini M, Maffei ME, et al.Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase[J]. ACS Synth Biol, 2014, 3:298-306. [27] Davies BS, Wang HS, Rine J.Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae:similar activation/regulatory domains but different response mechanisms[J]. Mol Cell Biol, 2005, 25:7375-7385. [28] Kühner S, van Noort V, Betts MJ, et al. Proteome organization in a genome-reduced bacterium[J]. Science, 2009, 326:1235-1240. [29] Menon AL, Poole FL, 2nd, et al. Novel multiprotein complexes identified in the hyperthermophilic archaeon Pyrococcus furiosus by non-denaturing fractionation of the native proteome[J]. Mol Cell Proteomics, 2009, 8:735-751. [30] Deng Y, Sun M, Xu S, et al.Enhanced(S)-linalool production by fusion expression of farnesyl diphosphate synthase and linalool synthase in Saccharomyces cerevisiae[J]. Appl Microbiol, 2016, 121:187-195. [31] Zhao J, Li C, Zhang Y, et al.Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae[J]. Microb Cell Fact, 2017, 16:17. [32] Marmulla R, Harder J.Microbial monoterpene transformations-a review[J]. Front Microbiol, 2014, 5:346. [33] Gamero A, Manzanares P, Querol A, et al.Monoterpene alcohols release and bioconversion by Saccharomyces species and hybrids[J]. Int J Food Microbiol, 2011, 145:92-97. [34] Steyer D, Erny C, Claudel P, et al.Genetic analysis of geraniol metabolism during fermentation[J]. Food Microbiol, 2013, 33:228-234. [35] Zhou J, Wang C, Yoon SH, et al.Engineering Escherichia coli for selective geraniol production with minimized endogenous dehydrogenation[J]. Biotechnol, 2014, 169:42-50. [36] Liu J, Zhu Y, Du G, et al.Exogenous ergosterol protects Saccharomyces cerevisiae from D-limonene stress[J]. Appl Microbiol, 2013, 114:482-491. [37] Brennan TC, Kromer JO, Nielsen LK.Physiological and transcriptional responses of Saccharomyces cerevisiae to d-limonene show changes to the cell wall but not to the plasma membrane[J]. Appl Environ Microbiol, 2013, 79:3590-3600. [38] Bakkali F, Averbeck S, Averbeck D, et al.Cytotoxicity and gene induction by some essential oils in the yeast Saccharomyces cerevisiae[J]. Mutat Res, 2005, 585:1-13. [39] Uribe S, Ramirez J, Pena A.Effects of beta-pinene on yeast membrane functions[J]. Bacteriol, 1985, 161:1195-1200. [40] Brennan TC, Williams TC, Schulz BL, et al.Evolutionary engineering improves tolerance for replacement jet fuels in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 2015, 81:3316-3325. [41] Dunlop MJ, Dossani ZY, Szmidt HL, et al.Engineering microbial biofuel tolerance and export using efflux pumps[J]. Mol Syst Biol, 2011, 7:487. [42] Wang Y, Lim L, DiGuistini S, et al. A specialized ABC efflux transporter GcABC-G1 confers monoterpene resistance to Grosmannia clavigera, a bark beetle-associated fungal pathogen of pine trees[J]. New Phytol, 2013, 197:886-898. [43] Brown S, Clastre M, Courdavault V, et al.De novo production of the plant-derived alkaloid strictosidine in yeast[J]. Proc Natl Acad Sci USA, 2015, 112:3205-3210. [44] Amiri P, Shahpiri A, Asadollahi MA, et al.Metabolic engineering of Saccharomyces cerevisiae for linalool production[J]. Biotechnol Lett, 2016, 38:503-508. [45] Behrendorff JB, Vickers CE, Chrysanthopoulos P, et al.2, 2-Diphenyl-1-picrylhydrazyl as a screening tool for recombinant monoterpene biosynthesis[J]. Microb Cell Fact, 2013, 12:76. [46] Chen Y, Daviet L, Schalk M, et al.Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism[J]. Metab Eng, 2013, 15:48-54. [47] Shiba Y, Paradise EM, Kirby J, et al.Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids[J]. Metab Eng, 2007, 9:160-168. [48] Parveen M, Hasan MK, Takahashi J, et al.Response of Saccharomyces cerevisiae to a monoterpene:evaluation of antifungal potential by DNA microarray analysis[J]. Antimicrob Chemother, 2004, 54:46-55. |