[1] Xu M, Gao Z, Wei Q, et al.Hemin/G-quadruplex-based DNAzyme concatamers for in situ amplified impedimetric sensing of copper(II)ion coupling with DNAzyme-catalyzed precipitation strategy[J]. Biosens Bioelectron, 2015, 74(18):1-7. [2] Breaker RR, Joyce GF.A DNA enzyme that cleaves RNA[J]. Chemistry & Biology, 1994, 1(4):223-229. [3] Lan T, Furuya K, Lu Y.A highly selective lead sensor based on a classic lead DNAzyme[J]. Chem Commun, 2010, 46(22):3896-3898. [4] Brown AK, Li J, Pavot CMB, et al.A lead-dependent DNAzyme with a two-step mechanism[J]. Biochemistry, 2003, 42(23):7152-7161. [5] Wang Z, Lee JH, Lu Y. label-free colorimetric detection of lead ions with a nanomolar detection Limit and tunable dynamic range by using gold nanoparticles and DNAzyme[J]. Advanced Materials, 2008, 20(17):3263-3267. [6] Liu JW, Lu Y.A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles[J]. Journal of the American Chemical Ssociety, 2003, 125(22):6642-6643. [7] Ernest SK, Audrey P.Nanotechnology, nanomedicine and the development of new effective therapies for cancer[J]. Chemical Reviews, 2005, 105(4):1547-1562. [8] Wei H, Li B, Li J, et al.DNAzyme-based colorimetric sensing of lead(Pb2+)using unmodified gold nanoparticle probes[J]. Nanotechnology, 2008, 19(9):095501. [9] Sun H, Yu L, Chen H, et al.A colorimetric lead(II)ions sensor based on selective recognition of G-quadruplexes by a clip-like cyanine dye[J]. Talanta, 2015, 136:210-214. [10] Liu CW, Huang CC, Chang HT.Highly selective DNA-based sensor for lead(II)and mercury(II)ions[J]. Anal Chem, 2009, 81(6):2383-2387. [11] Li J, Lu Y, A highly sensitive and selective catalytic DNA biosensor for lead ions[J]. Journal of the American Chemical Society. 122(2000)10466-10467. [12] Zhao YX, Lin QI, Yang WJ, et al.Amplified fluorescence detection of Pb2+, using Pb2+ -dependent DNAzyme combined with nicking enzyme-mediated enzymatic recycling amplification[J]. Chinese Journal of Anal Chem, 2012, 40(8):1236-1240. [13] 伊魁宇. CdTe量子点的合成及其基于荧光淬灭作用的分析应用[D]. 沈阳:东北大学, 2009. [14] Zhang L, Han B, Li T, et al.label-free DNAzyme-based fluorescing molecular switch for sensitive and selective detection of lead ions[J]. Chem Commun, 2011, 47(11):3099-3101. [15] Zeng G, Zhou Y, Tang L, et al.Label free detection of lead using impedimetric sensor based on ordered mesoporous carbon-gold nanoparticles and DNAzyme catalytic beacons[J]. Talanta. 2016, 146:641-647. [16] Zhao XH, Kong RM, Zhang XB, et al.Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity[J]. Anal Chem, 2011, 83(13):5062-5066. [17] Yun W, Wu H, Liu X, et al.Simultaneous fluorescent detection of multiple metal ions based on the DNAzymes and graphene oxide[J]. Analytica Chimica Acta, 2017, 986:115-117. [18] 类成存. 基于表面增强拉曼光谱的生物传感器研制[D]. 青岛:青岛科技大学, 2014. [19] Alam A.GFP expressing bacterial biosensor to measure lead contamination in aquatic environment[J]. Current Science, 2008, 207(9):2003-2017. [20] Selifonova O, Burlage R, Barkay T, Bioluminescent sensors for the detection of bioavailable Hg(II)in the environment[J]. Applied & Environmental Microbiology, 1993, 59:3083-3090. [21] Garaj S, Hubbard W, Reina A, et al.Graphene as a sub-nanometer trans-electrode membrane[J]. Nature, 2010, 467(7312):190-193. [22] Dekker C.Solid-state nanopores.[J]. Nat Nanotechnol, 2007, 2(4):209-215. [23] Li J, Stein D, Mcmullan C, et al.Ion-beam sculpting at nanometre Length scales[J]. Nature, 2001, 412(6843):166-169. [24] Kawano R, Osaki T, Sasaki H, et al.Rapid detection of a cocaine-binding aptamer using biological nanopores on a chip[J]. J Am Chem Soc, 2011, 133(22):8474-8477. [25] Li WW, Gong L, Bayley H.Single-molecule detection of 5-hydroxymethylcytosine in DNA through chemical modification and nanopore analysis.[J]. Angewandte Chemie, 2013, 125(16):4446-4451. [26] Wang G, Wang L, Han Y, et al.Nanopore detection of copper ions using a polyhistidine probe[J]. Biosens Bioelectron, 2014, 53(9):453-458. [27] Makra I, Jágerszki G, Bitter I, et al.Nernst-Planck/Poisson model for the potential response of permselective gold nanopores[J]. Electrochimica Acta, 2012, 73(7):70-77. [28] Chang W, Bard AJ, Feldberg SW.Current rectification at quartz nanopipet electrodes[J]. Anal Chem, 1997, 69(22):4627-4633. [29] Siwy Z, Trofin L, Kohli P, et al.Protein biosensors based on biofunctionalized conical gold nanotubes[J]. J Am Chem Soc, 2005, 127(14):5000-5001. [30] Tian Y, Hou X, Wen L, et al.A biomimetic zinc activated ion channel[J]. Chem Commun, 2010, 46(10):1682-1684. [31] Li C, Ma F, Wu Z, et al.Solution-pH-modulated rectification of ionic current in highly ordered nanochannel arrays patterned with chemical functional groups at designed positions[J]. Advanced Functional Materials, 2013, 23(31):3836-3844. [32] Shang Y, Zhang Y, Li P, et al.DNAzyme tunable lead(II)gating based on ion-track etched conical nanochannels[J]. Chem Commun, 2015, 51(27):5979-5981. [33] He H, Xu X, Wang P, et al.The facile surface chemical modification of a single glass nanopore and its use in the nonenzymatic detection of uric acid[J]. Chem Commun, 2015, 51(10):1914-1917. [34] Liu M, Zhang H, Li K, et al.A bio-inspired potassium and pH responsive double-gated nanochannel[J]. Advanced Functional Materials, 2015, 25(3):421-426. [35] Gyurcsányi RE, Vigassy T, Pretsch E.Biorecognition-modulated ion fluxes through functionalized gold nanotubules as a novel label-free biosensing approach[J]. Chem Commun, 2003, 9(20):2560-2561. [36] Jágerszki G, Gyurcsányi RE, Höfler L, et al.Hybridization-modulated ion fluxes through peptide-nucleic-acid-functionalized gold nanotubules. A new approach to quantitative label-free DNA analysis[J]. Nano Letters, 2007, 7(6):1609-1612. [37] Li SJ, Li J, Wang K, et al.A nanochannel array-based electrochemical device for quantitative label-free DNA analysis[J]. ACS Nano, 2010, 4(11):6417-6424. [38] Gao HL, Wang M, Wu ZQ, et al.Morpholino-functionalized nanochannel array for label-free single nucleotide polymorphisms detection[J]. Anal Chem, 2015, 87(7):3936-3941. [39] Yu J, Luo P, Xin C, et al.Quantitative evaluation of biological reaction kinetics in confined nanospaces[J]. Anal Chem, 2014, 86(16):8129-8135. [40] Li SJ, Xia N, Yuan BQ, et al.A novel DNA sensor using a sandwich format by electrochemical measurement of marker ion fluxes across nanoporous alumina membrane[J]. Electrochimica Acta, 2015, 159:234-241. [41] Gao HL, Li CY, Ma FX, et al.A nanochannel array based device for determination of the isoelectric point of confined proteins[J]. Physical Chemistry Chemical Physics, 2012, 14(26):9460-9467. [42] Li CY, Tian YW, Shao WT, et al.Solution pH regulating mass transport in highly ordered nanopore array electrode[J]. Electrochemistry Communications, 2014, 42(5):1-5. [43] De EA, Chunglok W, Surareungchai W, et al.Nanochannels for diagnostic of thrombin-related diseases in human blood[J]. Biosens Bioelectron, 2013, 40(1):24-31. [44] Alfredo DE, Merkoçi A.A nanochannel/nanoparticle-based filtering and sensing platform for direct detection of a cancer biomarker in blood[J]. Small, 2015, 7(5):675-682. [45] Wang X, Smirnov S. label-free DNA sensor based on surface charge modulated ionic conductance[J]. ACS Nano, 2009, 3(4):1004-1010. [46] Chen ZM, Shen GZ, Li YP, et al.A novel biomimetic logic gate for sensitive and selective detection of Pb(II)base on porous alumina nanochannels[J]. Electrochemistry Communications, 2015, 60:83-87. [47] Paxton WF, Sundararajan S, Mallouk TE, et al.Chemical locomotion[J]. Cheminform, 2006, 37(42):5420-5429. [48] Dr SS, Dr MP.Nanorobots:The ultimate wireless self-propelled sensing and actuating devices[J]. Cheminform, 2010, 4(9):1402-1410. [49] Fischer P, Ghosh A.Magnetically actuated propulsion at low reynolds numbers:towards nanoscale control[J]. Nanoscale, 2011, 3(2):557-563. [50] Sengupta S, Ibele ME, Sen A.Fantastic voyage:designing self-powered nanorobots[J]. Angewandte Chemie International Edition, 2012, 51(34):8434-8445. [51] Wang J.Can man-made nanomachines compete with nature biomotors?[J]. ACS Nano, 2009, 3(1):4-9. [52] Mei Y, Solovev AA, Sanchez S, et al.Rolled-up nanotech on polymers:from basic perception to self-propelled catalytic microengines[J]. Chemical Society Reviews, 2011, 40(5):2109-2119. [53] Patra D, Sengupta S, Duan W, et al.Intelligent, self-powered, drug delivery systems[J]. Nanoscale, 2013, 5(4):1273-1283. [54] Gao W, Pei A, Feng X, et al.Organized self-assembly of Janus micromotors with hydrophobic hemispheres[J]. J Am Chem Soc, 2013, 135(3):998-1001. [55] Orozco J, Cheng G, Vilela D, et al.Micromotor-based high-yielding fast oxidative detoxification of chemical threats[J]. Angewandte Chemie International Edition, 2013, 125(50):13518-13521. [56] Soler L, Magdanz V, Fomin VM, et al.Self-propelled micromotors for cleaning polluted water[J]. ACS Nano, 2013, 7(11):9611-9620. [57] Järup L.Treatment of heavy metal contamination[J]. British Medical Bulletin, 2003, 68(486):167-182. |