生物技术通报 ›› 2019, Vol. 35 ›› Issue (5): 15-27.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0105
韩立杰1, 才宏伟2
收稿日期:
2019-01-28
出版日期:
2019-05-26
发布日期:
2019-05-23
作者简介:
韩立杰,女,讲师,博士,研究方向:高粱基因组学;E-mail:441580425@qq.com
基金资助:
HAN Li-jie1, CAI Hong-wei2
Received:
2019-01-28
Published:
2019-05-26
Online:
2019-05-23
摘要: 高粱是世界第五大粮食作物,种植并培育高产的高粱品种对缓解世界粮食安全问题具有重要意义。粒重是构成产量的一个重要因素,增加粒重是提高高粱产量的重要途径。粒重是由数量性状基因控制的复杂性状,目前已有部分控制高粱粒重的QTLs(Quantitative trait loci,QTL)被定位,这些QTLs在高粱10条染色体上均有分布。对高粱粒重的遗传特点,粒重的影响因素及粒重QTL定位的研究进展进行了总结和概述,对已定位的高粱粒重QTLs进行了比较分析,查找了水稻和玉米中已克隆的粒重相关基因在高粱中的同源基因,并与高粱粒重QTLs定位区间进行了比较,以期为高粱粒重的分子标记辅助育种及高粱粒重主效QTLs的精细定位及克隆提供依据。
韩立杰, 才宏伟. 高粱粒重遗传研究进展[J]. 生物技术通报, 2019, 35(5): 15-27.
HAN Li-jie, CAI Hong-wei. Progress on Genetic Research of Sorghum Grain Weight[J]. Biotechnology Bulletin, 2019, 35(5): 15-27.
[1] 梁小红, 仪治本, 赵威军. 高粱重要抗性性状的基因定位研究综述[J]. 作物杂志, 2005(3):7-9. [2] Godfray HCJ, Beddington JR, Crute IR, et al.Food security:the challenge of feeding 9 billion people[J]. Science, 2010, 327(5967):812-818. [3] 高士杰. 高粱高产杂交种产量结构的分析[J]. 吉林农业科学, 1986(3):16-19. [4] 卢庆善. 高粱学[M]. 北京:中国农业出版社, 1999. [5] 杨伟光, 韩立军, 牟金明, 等. 粒用高粱粒重的遗传研究[J]. 作物学报, 2001, 27(5):627-632. [6] 程宝成, 刘巧英, 江宏. 高粱粒重的双列分析[J]. 遗传, 1989, 11(3):12-14. [7] Kiniry JR, Musser RL, 王富德. 高粱粒重对灌浆初、后期环境的反应[J]. 国外农学-杂粮作物, 1989(6):35-38. [8] Kiniry JR, 王富德. 高粱随粒数减少而致的粒重增加[J]. 国外农学-杂粮作物, 1990(1):5-9. [9] Tao Y, Mace E, George-Jaeggli B, et al.Novel grain weight loci revealed in a cross between cultivated and wild sorghum[J]. The Plant Genome, 2018, 11(2):1-10. [10] Murray SC, Sharma A, Rooney WL, et al.Genetic improvement of sorghum as a biofuel feedstock:I. QTL for stem sugar and grain nonstructural carbohydrates[J]. Crop Science, 2008, 48(6):2165-2179. [11] Paterson AH, Bowers JE, Bruggmann R, et al.The sorghum bicolor genome and the diversification of grasses[J]. Nature, 2009, 457(7229):551-556. [12] Paterson AH, Lin YR, Li Z, et al.Convergent domestication of cereal crops by independent mutations at corresponding genetic loci[J]. Science, 1995, 269(5231):1714-1718. [13] Brown PJ, Klein PE, Bortiri E, et al.Inheritance of inflorescence architecture in sorghum[J]. Theoretical and Applied Genetics, 2006, 113(5):931-942. [14] Feltus FA, Hart GE, Schertz KF, et al.Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations[J]. Theoretical and Applied Genetics, 2006, 112(7):1295-1305. [15] Srinivas G, Satish K, Madhusudhana R, et al.Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum[J]. Theoretical and Applied Genetics, 2009, 118:1439-1454. [16] Phuong N, Stützel H, Uptmoor R.Quantitative trait loci associated to agronomic traits and yield components in a Sorghum bicolor L. Moench RIL population cultivated under pre-flowering drought and well-watered conditions[J]. Agricultural Sciences, 2013, 4(12):781-791. [17] Rajkumar FB, Kavil SP, Girma Y, et al.Molecular mapping of genomic regions harbouring QTLs for root and yield traits in sorghum(Sorghum bicolor L. Moench)[J]. Physiology and Molecular Biology of Plants, 2013, 19(3):409-419. [18] Shehzad T, Okuno K.QTL mapping for yield and yield-contributing traits in sorghum(Sorghum bicolor(L.)Moench)with genome-based SSR markers[J]. Euphytica, 2015, 203(1):17-31. [19] Han L, Chen J, Mace E, et al.Fine mapping of qGW1, a major QTL for grain weight in sorghum[J]. Theoretical and Applied Genetics, 2015, 128(9):1813-1825. [20] Sukumaran S, Li X, Li X, et al.QTL mapping for grain yield, flowering time, and stay-green traits in sorghum with genotyping-by-sequencing markers[J]. Crop Science, 2016, 56(4):1429-1443. [21] Boyles RE, Pfieffer BK, Cooper EA, et al.Quantitative trait loci mapping of agronomic and yield traits in two grain sorghum biparental families[J]. Crop Science, 2017, 57(5):2443-2457. [22] Pereira MG, Ahnert D, Lee M, et al.Genetic mapping of quantitative trait loci for panicle characteristics and kernel weight in sorghum[J]. Revista Brasileira De Genetica, 1995, 18(2):249-257. [23] Tuinstra MR, Grote EM, Goldsbrough PB, et al.Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor(L.)Moench[J]. Molecular Breeding, 1997, 3(6):439-448. [24] Rami JF, Dufour P, Trouche G, et al.Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum(Sorghum bicolor L. Moench)[J]. Theoretical and Applied Genetics, 1998, 97(4):605-616. [25] Upadhyaya HD, Wang YH, Sharma S, et al.SSR markers linked to kernel weight and tiller number in sorghum identified by association mapping[J]. Euphytica, 2012, 187(3):401-410. [26] Zhang D, Li J, Compton RO, et al.Comparative genetics of seed size traits in divergent cereal lineages represented by sorghum(Panicoidae)and rice(Oryzoidae)[J]. G3:Genes, Genomes, Genetics, 2015, 5(6):1117-1128. [27] Boyles RE, Cooper EA, Myers MT, et al.Genome-wide association studies of grain yield components in diverse sorghum germplasm[J]. The Plant Genome, 2016, 9(2):1-17. [28] 韩立杰. 高粱粒重的QTL分析及qGW1的精细定位[D]. 北京:中国农业大学, 2016. [29] Gui J, Liu C, Shen J, et al.Grain setting defect1, encoding a remorin protein, affects the grain setting in rice through regulating plasmodesmatal conductance[J]. Plant Physiology, 2014, 166(3):1463-1478. [30] Mace ES, Jordan DR.Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement[J]. Theoretical and Applied Genetics, 2011, 123(1):169-191. [31] Li ML, Yuyama N, Luo L, et al.In silico mapping of 1758 new SSR markers developed from public genomic sequences for sorghum[J]. Molecular Breeding, 2009, 24(1):41-47. [32] Yonemaru J, Ando T, Mizubayashi T, et al.Development of genome-wide simple sequence repeat markers using whole-genome shotgun sequences of sorghum[Sorghum bicolor(L.)Moench][J]. DNA Research, 2009, 16(3):187-193. [33] 刘欢欢. 高粱驯化相关性状遗传结构的解析[D]. 北京:中国农业大学, 2016. [34] Lin ZW, Li XR, Shannon LM, et al.Parallel domestication of the Shattering1 genes in cereals[J]. Nature Genetics, 2012, 44(6):720-723. [35] Liu HH, Liu HQ, Zhou LN, et al.Parallel domestication of the Heading Date 1 gene in cereals[J]. Molecular Biology and Evolution, 2015, 32(10):2726-2737. [36] Li Q, Li L, Yang XH, et al.Relationship, evolutionary fate and function of two maize co-orthologs of rice GW2 associated with kernel size and weight[J]. BMC Plant Biology, 2010, 10(1):143-158. [37] Li Q, Yang XH, Bai GH, et al.Cloning and characterization of a putative GS3 ortholog involved in maize kernel development[J]. Theoretical and Applied Genetics, 2010, 120(4):753-763. [38] Tao Y, Mace ES, Tai S, et al.Whole-genome analysis of candidate genes associated with seed size and weight in sorghum bicolor reveals signatures of artificial selection and insights into parallel domestication in cereal crops[J]. Frontiers in Plant Science, 2017, 8:1237-1251. [39] Segami S, Kono I, Ando T, et al.Small and round seed 5 gene encodes alpha-tubulin regulating seed cell elongation in rice[J]. Rice, 2012, 5(1):4-14. [40] Qi P, Lin YS, Song XJ, et al.The novel quantitative trait locus GL3. 1 controls rice grain size and yield by regulating Cyclin-T1;3[J]. Cell Research, 2012, 22(12):1666-1680. [41] Wang Y, Xiong G, Hu J, et al.Copy number variation at the GL7 locus contributes to grain size diversity in rice[J]. Nature Genetics, 2015, 47(8):944-948. [42] Mao H, Sun S, Yao J, et al.Linking differential domain functions of the GS3 protein to natural variation of grain size in rice[J]. Proceedings of the National Academy of Sciences, 2010, 107(45):19579-19584. [43] Nakagawa H, Tanaka A, Tanabata T, et al.SHORT GRAIN1 decreases organ elongation and brassinosteroid response in rice[J]. Plant Physiology, 2012, 158(3):1208-1219. [44] Wang S, Wu K, Yuan Q, et al.Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics, 2012, 44(8):950-954. [45] Li F, Liu W, Tang J, et al.Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation[J]. Cell Research, 2010, 20(7):838-849. [46] Abe Y, Mieda K, Ando T, et al.The SMALL AND ROUND SEED1(SRS1/DEP2)gene is involved in the regulation of seed size in rice[J]. Genes Genetic Systems, 2010, 85(5):327-339. [47] Hu J, Wang Y, Fang Y, et al.A rare allele of GS2 enhances grain size and grain yield in rice[J]. Molecular Plant, 2015, 8(10):1455-1465. [48] Che R, Tong H, Shi B, et al.Control of grain size and rice yield by GL2-mediated brassinosteroid responses[J]. Nature Plants, 2015, 2(1):15195-15226. [49] Tanabe S, Ashikari M, Fujioka S, et al.A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length[J]. The Plant Cell, 2005, 17(3):776-790. [50] Liu L, Tong H, Xiao Y, et al.Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice[J]. Proceedings of the National Academy of Sciences, 2015, 112(35):11102-11107. [51] Si L, Chen J, Huang X, et al.OsSPL13 controls grain size in cultivated rice[J]. Nature Genetics, 2016, 48(4):447-456. [52] Hong Z, Ueguchi-Tanaka M, Umemura K, et al.A rice brassinosteroid-deficient mutant, ebisu dwarf(d2), is caused by a loss of function of a new member of cytochrome P450[J]. The Plant Cell, 2003, 15(12):2900-2910. [53] Song XJ, Kuroha T, Ayano M, et al.Rare allele of a previously unidentified histone H4 acetyltransferase enhances grain weight, yield, and plant biomass in rice[J]. Proceedings of the National Academy of Sciences, 2015, 112(1):76-81. [54] Song XJ, Huang W, Shi M, et al.A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase[J]. Nature Genetics, 2007, 39(5):623-630. [55] Sosso D, Luo D, Li QB, et al.Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport[J]. Nature Genetics, 2015, 47(12):1489-1493. [56] Martin A, Lee J, Kichey T, et al.Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production[J]. The Plant Cell, 2006, 18(11):3252-3274. [57] Duan P, Rao Y, Zeng D, et al.SMALL GRAIN 1, which encodes a mitogen-activated protein kinase kinase 4, influences grain size in rice[J]. The Plant Journal, 2014, 77(4):547-557. [58] Ishimaru K, Hirotsu N, Madoka Y, et al.Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield[J]. Nature Genetics, 2013, 45(6):707-711. [59] Lang Z, Wills DM, Lemmon ZH, et al.Defining the role of prolamin-box binding factor1 gene during maize domestication[J]. Journal of Heredity, 2014, 105(4):576-582. [60] Weng J, Li B, Liu C, et al.A non-synonymous SNP within the isopentenyl transferase 2 locus is associated with kernel weight in Chinese maize inbreds(Zea mays L.)[J]. BMC Plant Biology, 2013, 13(1):98-98. [61] Li XJ, Zhang YF, Hou MM, et al.Small kernel 1encodes a pentatricopeptide repeat protein required for mitochondrial nad7 transcript editing and seed development in maize(Zea mays)and rice(Oryza sativa)[J]. The Plant Journal, 2014, 79(5):797-809. [62] Kitagawa K, Kurinami S, Oki K, et al.A novel kinesin 13 protein regulating rice seed length[J]. Plant Cell Physiology, 2010, 51 (8):1315-1329. [63] Li Y, Fan C, Xing Y, et al.Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nature Genetics, 2011, 43(12):1266-1269. [64] Shomura A, Izawa T, Ebana K, et al.Deletion in a gene associated with grain size increased yields during rice domestication[J]. Nature Genetics, 2008, 40(8):1023-1028. [65] Weng JF, Gu SH, Wan XY, et al.Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008, 18(12):1199-1209. |
[1] | 王腾辉, 葛雯冬, 罗雅方, 范震宇, 王玉书. 基于极端混合池(BSA)全基因组重测序的羽衣甘蓝白色叶基因定位[J]. 生物技术通报, 2023, 39(9): 176-182. |
[2] | 王贵芳, 姚元涛, 许海峰, 相昆, 梁家慧, 张淑辉, 王文茹, 张明娟, 张美勇, 陈新. 核桃JrSnRK1α1.1调控种子油脂合成与积累[J]. 生物技术通报, 2023, 39(9): 183-191. |
[3] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[4] | 范昕琦, 王海燕, 陈静, 张晓娟, 郭琦, 梁笃, 周福平, 聂萌恩, 张一中, 柳青山. EMS诱变对高粱成苗及M1主要农艺性状的影响[J]. 生物技术通报, 2023, 39(7): 173-184. |
[5] | 徐建霞, 丁延庆, 冯周, 曹宁, 程斌, 高旭, 邹桂花, 张立异. 基于Super-GBS的高粱株高和节间数QTL定位[J]. 生物技术通报, 2023, 39(7): 185-194. |
[6] | 王春语, 李政君, 王平, 张丽霞. 高粱表皮蜡质缺失突变体sb1抗旱生理生化分析[J]. 生物技术通报, 2023, 39(5): 160-167. |
[7] | 周诗晨, 仪治本, 王馨翊, 杨晓颖, 孙丽娜, 栾维江, 梁闪闪. 高粱双粒突变体Dgs的遗传分析与基因定位[J]. 生物技术通报, 2022, 38(7): 171-177. |
[8] | 江佰阳, 白文斌, 张建华, 范娜, 史丽娟. 高粱抗旱性鉴定方法及分子生物学研究进展[J]. 生物技术通报, 2021, 37(4): 260-272. |
[9] | 张一中, 范昕琦, 杨慧勇, 张晓娟, 邵强, 梁笃, 郭琦, 柳青山, 杜维俊. 基于简化基因组测序高粱育种材料亲缘关系的分析[J]. 生物技术通报, 2020, 36(12): 21-33. |
[10] | 张丹, 王楠, 李超, 谢旗, 唐三元. 甜高粱——一种优质的饲料作物[J]. 生物技术通报, 2019, 35(5): 2-8. |
[11] | 冷传远, 郝怀庆, 景海春. 甜高粱茎秆持汁性研究进展[J]. 生物技术通报, 2019, 35(5): 9-14. |
[12] | 丁延庆, 周棱波, 汪灿, 曹宁, 程斌, 高旭, 彭秋, 邵明波, 张立异. 酱香型酒用糯高粱研究进展[J]. 生物技术通报, 2019, 35(5): 28-34. |
[13] | 宋玉双, 隋娜. 甜高粱FAD7基因的功能分析[J]. 生物技术通报, 2019, 35(5): 35-41. |
[14] | 王平, 丛玲, 王春语, 朱振兴, AAshokKumar, 张丽霞, 陆晓春. 高粱A1型细胞质雄性不育系与保持系线粒体基因组分析比较[J]. 生物技术通报, 2019, 35(5): 42-47. |
[15] | 袁闯, 许兴, 唐三元, 毛桂莲, 朱林. 孕穗期甜高粱耐旱性鉴定[J]. 生物技术通报, 2019, 35(12): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||