[1] Zheng J, Nicovich PR, Dickson RM.Highly fluorescent noble-metal quantum dots[J]. Annu Rev Phys Che, 2007, 58:409-431. [2] Díez I, Ras RHA.Few-atom silver clusters as fluorescent reporters[M]//Advanced Fluorescence Reporters in Chemistry and Biology II. Springer, Berlin:Heidelberg, 2010, 9:307-332. [3] Ge L, Sun X, Hong Q, et al.Ratiometric nanocluster beacon:a label-free and sensitive fluorescent DNA detection platform[J]. ACS Applied Materials &Interfaces, 2017, 9(15):13102-13110. [4] Marzilli LG, Kistenmacher TJ, Rossi M.An extension of the role of O(2)of cytosine residues in the binding of metal ions. Synthesis and structure of an unusual polymeric silver(I)complex of 1-methylcytosine[J]. Journal of the American Chemical Society, 1977, 99(8):2797-2798. [5] Braun E, Eichen Y, Sivan U, et al.DNA-templated assembly and electrode attachment of a conducting silver wire[J]. Nature, 1998, 391(6669):775-778. [6] Zheng J, Dickson RM.Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence[J]. Journal of the American Chemical Society, 2002, 124(47):13982-13983. [7] Sengupta B, Ritchie CM, Buckman JG, et al.Base-directed formation of fluorescent silver clusters[J]. Journal of Physical Chemistry C, 2008, 112(48):18776-18782. [8] Gwinn EG, O’Neill P, Guerrero AJ, et al. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters[J]. Advanced Materials, 2008, 20(2):279-283. [9] Sengupta B, Springer K, Buckman JG, et al.DNA templates for fluorescent silver clusters and i-motif folding[J]. The Journal of Physical Chemistry C, 2009, 113(45):19518-19524. [10] Sharma J, Yeh HC, Yoo H, et al.A complementary palette of fluorescent silver nanoclusters[J]. Chemical Communications, 2010, 46(19):3280-3282. [11] O’Neill PR, Velazquez LR, Dunn DG, et al. Hairpins with poly-C loops stabilize four types of fluorescent Agn:DNA[J]. The Journal of Physical Chemistry C, 2009, 113(11):4229-4233. [12] Huang Z, Pu F, Hu D, et al.Site-specific DNA-programmed growth of fluorescent and functional silver nanoclusters[J]. Chemistry-A European Journal, 2011, 17(13):3774-3780. [13] Petty JT, Zheng J, Hud NV, et al.DNA-templated Ag nanocluster formation[J]. Journal of the American Chemical Society, 2004, 126(16):5207-5212. [14] Zhang L, Zhu J, Zhou Z, et al.A new approach to light up DNA/Ag nanocluster-based beacons for bioanalysis[J]. Chemical Science, 2013, 4(10):4004-4010. [15] Zhou W, Zhu J, Fan D, et al.A Multicolor Chameleon DNA-templated silver nanocluster and its application for ratiometric fluorescence target detection with exponential signal response [J]. Advanced Functional Materials, 2017, 27(46):1704092. [16] Petty JT, Sergev OO, Ganguly M, et al.A segregated, partially oxidized, and compact Ag10 cluster within an encapsulating DNA host[J]. Journal of the American Chemical Society, 2016, 138(10):3469-3477. [17] Huard DJE, Demissie A, Kim D, et al.Atomic structure of a fluorescent Ag8 cluster templated by a multistranded DNA scaffold[J]. Journal of the American Chemical Society, 2019, 141(29):11465-11470. [18] Copp SM, Schultz D, Swasey S, et al.Magic numbers in DNA-stabilized fluorescent silver clusters lead to magic colors[J]. The Journal of Physical Chemistry Letters, 2014, 5(6):959-963. [19] Copp SM, Schultz D, Swasey SM, et al.Cluster plasmonics:dielectric and shape effects on DNA-stabilized silver clusters[J]. Nano Letters, 2016, 16(6):3594-3599. [20] Richards CI, Choi S, Hsiang JC, et al.Oligonucleotide-stabilized Ag nanocluster fluorophores[J]. Journal of the American Chemical Society, 2008, 130(15):5038-5039. [21] Sengupta B, Ritchie CM, Buckman JG, et al.Base-directed formation of fluorescent silver clusters[J]. The Journal of Physical Chemistry C, 2008, 112(48):18776-18782. [22] Yeh HC, Sharma J, Han JJ, et al.Nanocluster beacon-A new molecular probe for homogeneous detection of nucleic acid targets[C]//2011 6th IEEEInternational Conference on Nano/Micro Engineered and Molecular Systems. IEEE, 2011:267-270. [23] Li T, Xiao P, Khan A, et al.Preparation of DNA-templated silver nanoclusters under macromolecular crowding conditions[J]. Nanoscience and Nanotechnology Letters, 2017, 9(6):892-896. [24] Cerretani C, Vosch T.Switchable dual-emissive DNA-stabilized silver nanoclusters[J]. ACS Omega, 2019, 4(4):7895-7902. [25] Kun M, Qinghua C, Guiying L, et al.DNA abasic site-directed formation of fluorescent silver nanoclusters for selective nucleobase recognition. Nanotechnology, 2011, 22(30):305502. [26] Zhu R, Luo X, Deng L, et al.An enzymatic polymerization-activated silver nanocluster probe for in situ apoptosis assay[J]. Analyst, 2018, 143(12):2908-2914. [27] Yeh HC, Sharma J, Han JJ, et al.A DNA-silver nanocluster probe that fluoresces upon hybridization[J]. Nano Letters, 2010, 10(8):3106-3110. [28] Yeh HC, Sharma J, Shih IM, et al.A fluorescence light-up Ag nanocluster probe that discriminates single-nucleotide variants by emission color[J]. Journal of the American Chemical Society, 2012, 134(28):11550-11558. [29] Li J, Zhong X, Zhang H, et al.Binding-induced fluorescence turn-on assay using aptamer-functionalized silver nanocluster DNA probes[J]. Analytical chemistry, 2012, 84(12):5170-5174. [30] Zhang J, Xia YK, Chen M, et al.A fluorescent aptasensor based on DNA-scaffolded silver nanoclusters coupling with Zn(II)-ion signal-enhancement for simultaneous detection of OTA and AFB1[J]. Sensors and Actuators B:Chemical, 2016, 235:79-85. [31] Lee J, Park J, Lee HH, et al.Fluorescence switch for silver ion detection utilizing dimerization of DNA-Ag nanoclusters[J]. Biosensors and Bioelectronics, 2015, 68:642-647. [32] Khan IM, Zhao S, Niazi S, et al.Silver nanoclusters based FRET aptasensor for sensitive and selective fluorescent detection of T-2 toxin[J]. Sensors and Actuators B:Chemical, 2018, 277:328-335. [33] Yang SW, Vosch T.Rapid detection of microRNA by a silver nanocluster DNA probe[J]. Analytical Chemistry, 2011, 83(18):6935-6939. [34] Wang W, Li J, Fan J, et al.Ultrasensitive and non-labeling fluore-scence assay for biothiols using enhanced silver nanoclusters[J]. Sensors and Actuators B:Chemical, 2018, 267:174-180. [35] Peng J, Ling J, Zhang XQ, et al.Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 2015, 137(137C):1250-1257. [36] Ding Y, Li X, Chen C, et al.A rapid evaluation of acute hydrogen sulfide poisoning in blood based on DNA-Cu/Ag nanocluster fluorescence probe[J]. Scientific Reports, 2017, 7(1):9638-9646. [37] Wang J, Zhang Z, Gao X, et al.A single fluorophore ratiometric nanosensor based on dual-emission DNA-templated silver nanoclusters for ultrasensitive and selective Pb2+ detection[J]. Sensors and Actuators B:Chemical, 2019, 282:712-718. [38] Jie G, Tan L, Zhao Y, et al.A novel silver nanocluster in situ synthesized as versatile probe for electrochemiluminescence and electrochemical detection of thrombin by multiple signal amplification strategy[J]. Biosensors and Bioelectronics, 2017, 94:243-249. [39] Quan H, Zuo C, Li T, et al.Electrochemical detection of carcinoembryonic antigen based on silver nanocluster/horseradish peroxidase nanocomposite as signal probe[J]. Electrochimica Acta, 2015, 176:893-897. [40] Oemrawsingh SSR, Markešević N, Gwinn EG, et al. Spectral properties of individual DNA-hosted silver nanoclusters at low temperatures[J]. The Journal of Physical Chemistry C, 2012, 116(48):25568-25575. [41] Zhao TT, Chen QY, Yang H.Spectroscopic study on the formation of DNA-Ag clusters and its application in temperature sensitive vehicles of DOX[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2015, 137:66-69. [42] Zhou W, Zhu J, Teng Y, et al.Novel dual fluorescence temperature-sensitive chameleon DNA-templated silver nanocluster pair for intracellular thermometry[J]. Nano Research, 2018, 11(4):2012-2023. [43] Zhou L, Lu P, Zhu M, et al.Silver nanocluster based sensitivity amplification of a quartz crystal microbalance gene sensor[J]. Microchimica Acta, 2016, 183(2):881-887. [44] Fan D, Zhu J, Liu Y, et al.Label-free and enzyme-free platform for the construction of advanced DNA logic devices based on the assembly of graphene oxide and DNA-templated Ag NCs[J]. Nanoscale, 2016, 8(6):3834-3840. [45] Zhang S, Wang K, Li KB, et al.A label-free and universal platform for the construction of an odd/even detector for decimal numbers based on graphene oxide and DNA-stabilized silver nanoclusters[J]. Nanoscale, 2017, 9(33):11912-11919. [46] Lin X, Liu Y, Deng J, et al.Multiple advanced logic gates made of DNA-Ag nanocluster and the application for intelligent detection of pathogenic bacterial genes[J]. Chemical Science, 2018, 9(7):1774-1781. [47] Liu J.DNA-stabilized, fluorescent, metal nanoclusters for biosensor development[J]. TrAC Trends in Analytical Chemistry, 2014, 58:99-111. [48] Choi S, Yu J.Recent development in deciphering the structure of luminescent silver nanodots[J]. APL Materials, 2017, 5(5):053401. [49] Ai J, Guo W, Li B, et al.DNA G-quadruplex-templated formation of the fluorescent silver nanocluster and its application to bioimaging[J]. Talanta, 2012, 88:450-455. [50] Li D, Qiao Z, Yu Y, et al.In situ fluorescence activation of DNA-silver nanoclusters as a label-free and general strategy for cell nucleus imaging[J]. Chemical Communications, 2018, 54(9):1089-1092. [51] Yin J, He X, Wang K, et al.Label-free and turn-on aptamer strategy for cancer cells detection based on a DNA-silver nanocluster fluorescence upon recognition-induced hybridization[J]. Analytical Chemistry, 2013, 85(24):12011-12019. [52] Huang S, Yao H, Wang W, et al.Highly sensitive fluorescence quantification of intracellular telomerase activity by repeat G-rich DNA enhanced silver nanoclusters[J]. Journal of Materials Chemistry B, 2018, 6(8):4583-4591. [53] Anaya NM, Faghihzadeh F, Ganji N, et al.Comparative study between chemostat and batch reactors to quantify membrane permeability changes on bacteria exposed to silver nanoparticles[J]. Science of The Total Environment, 2016, 565:841-848. [54] Bertuccio AJ, Tilton RD.Silver sink effect of humic acid on bacterial surface colonization in the presence of silver ions and nanoparticles[J]. Environmental Science & Technology, 2017, 51(3):1754-1763. [55] Yang L, Yao C, Li F, et al.Synthesis of branched DNA scaffolded super-nanoclusters with enhanced antibacterial performance[J]. Small, 2018, 14(16):1800185. [56] Javani S, Lorca R, Latorre A, et al.Antibacterial activity of DNA-stabilized silver nanoclusters tuned by oligonucleotide sequence[J]. ACS Applied Materials & Interfaces, 2016, 8(16):10147-10154. |